

Sprayers Powered by Solar Batteries - New Prospects in Agriculture

Zoxidov Iqboljon Zokirjonovich

Ferghana Polytechnic Institute

yoturk1986@gmail.com, iqboljon.zoxidov@ferpi.uz

Abstract

In the ever-evolving landscape of our contemporary world, where the population burgeons with each passing day, and the expanse of arable land dwindles, the significance of efficacious plant protection against pests and diseases escalates. Within this discourse, we delve into the critical import of safeguarding plants, particularly from insect pests, and elucidate how groundbreaking technologies, such as solar-powered sprayers, hold promise in addressing this quandary. Furthermore, we shall delve into the realms of cost-effectiveness and efficiency pertaining to solar-powered sprayers.

Key words: plants, insects, pests, crops, sprayer, solar-powered sprayers

Plants, whether they be cultivated crops or ornamental flora, find themselves besieged by an array of adversaries. Insects emerge as ubiquitous adversaries, capable of wreaking havoc upon harvests and precipitating substantial economic losses. Their modus operandi involves ravaging plants by devouring leaves, stems, flowers, and fruits, while also disseminating diseases. The pantheon of prevalent insect pests encompasses aphids, worms, beetles, ants, spiders, and myriad others (see Figure 1). These voracious invaders proliferate with alacrity and dissemination, particularly thriving in environments conducive to their proliferation, such as warm and humid climatic conditions.

Figure 1. Plant Pests.

Combatting these pests entails a multifaceted endeavor, necessitating a holistic approach. This approach encompasses an array of methodologies, including biological control, chemical pesticides, cultural practices, and physical barriers. However, many of these methodologies exhibit inherent shortcomings. For instance, chemical pesticides may engender harm to the surrounding environment and human health, while biological control may falter in the face of a serious pest incursion.

Increasing Crop Yield and Efficient Water Usage with Sprayers.

In the contemporary milieu, where resources are becoming increasingly constrained, the judicious utilization of water in agriculture assumes critical importance. Sprayers play a pivotal role in this endeavor, aiding in augmenting crop yield and optimizing water usage.

Sprayers are employed for the dispersion of pesticides, herbicides, and other substances aimed at safeguarding plants against pests and diseases. However, conventional spraying methods may result in significant water loss due to evaporation or improper distribution. This not only leads to inefficient water usage but can also adversely impact crop yield.

Nevertheless, modern technologies, such as solar-powered sprayers, hold promise in addressing these challenges. These devices harness solar energy for operation, rendering them environmentally friendly and economically viable. Moreover, they can be equipped with sensors and control systems that enable precise regulation of the amount of sprayed water, ensuring its efficient utilization.

With the aid of these sprayers, farmers can accurately determine the amount of water required for each plant and configure the system to dispense only the necessary quantity. This not only helps conserve water but also enhances plant health by preventing overhydration, which can lead to fungal diseases [1-6].

Furthermore, efficient water usage can contribute to increased crop yield. Plants receive the requisite amount of water, fostering their healthy growth and development. This, in turn, can result in enhanced crop productivity, as robust plants typically yield more produce.

Types and Features of Sprayers.

Sprayers constitute a vital tool in agriculture, and their design and features can vary significantly depending on specific requirements and conditions of use.

Firstly, it is worth noting that sprayers can be of various types, including handheld, ground-based, aerial, and drone sprayers (see Figure 2). Each of these types possesses its own characteristics and

advantages. For instance, handheld sprayers are typically more accessible and user-friendly, but they may prove ineffective over large areas. On the other hand, aerial and drone sprayers can cover extensive areas in a short span of time, albeit requiring more resources and technical expertise for operation.

Figure 2. Types of Sprayers.

A second crucial aspect of sprayer design is the spraying system, which may encompass pumps, hoses, nozzles, and other elements. The spraying system should be engineered to ensure uniform substance distribution and minimize losses due to evaporation and drift.

The third aspect is the control system. Modern sprayers may employ sensors and software for automatic control of the spraying process. This may entail dosage control, spraying speed, humidity, air temperature, and other parameters.

The fourth aspect is the power source. Traditional sprayers typically operate from the electric grid or a gasoline engine. However, modern technologies enable the utilization of alternative energy sources, such as solar panels. Solar-powered sprayers can be particularly useful in remote or inaccessible areas where grid connection may be problematic.

The design and features of sprayers can vary significantly, and the choice of a specific type of sprayer should be based on specific needs and conditions of use. Modern technologies, such as solar panels and automatic control systems, open up new possibilities for enhancing the efficiency and sustainability of agriculture.

One innovation in agriculture that is garnering increasing attention is solar-powered sprayers. These devices present a promising solution for the efficient and environmentally friendly management of water resources in agriculture.

Solar-powered sprayers harness solar energy to power their systems. This renders them an ideal solution for use in remote or inaccessible areas where access to the grid is unavailable. Furthermore, the use of solar energy makes these devices environmentally friendly, as they do not emit harmful substances into the atmosphere.

One of the key advantages of solar-powered sprayers is their ability to operate autonomously. Thanks to built-in batteries, these devices can function for extended periods without the need for recharging. This is particularly useful in conditions where sunlight is unavailable, such as cloudy days or nighttime.

Additionally, many modern models of solar-powered sprayers are equipped with control systems that enable automatic regulation of the spraying process. This may include control over water and

chemical dosage, spraying speed, and other parameters. This ensures high precision and efficiency of the process, minimizing water and chemical losses.

Despite all the advantages, solar-powered sprayers also have some limitations. One of them is the initial installation cost, which may be quite high. However, considering the long-term savings on electricity and increased efficiency of water and chemical usage, this investment can pay off over time.

On the Economy and Efficiency of Solar-Powered Sprayers.

Research confirms the economic viability of using solar-powered sprayers. Firstly, harnessing solar energy helps reduce electricity costs, a crucial factor given the escalating prices of energy resources. Secondly, solar panels can operate autonomously, particularly pertinent for remote or inaccessible areas where connecting to centralized power grids may be problematic or costly [5-10].

Moreover, it's noteworthy that some countries have governmental support programs for renewable energy sources, including solar panels. These may encompass tax incentives, subsidies, or the opportunity to sell excess energy back to the grid. For instance: "The Law of the Republic of Uzbekistan on the Use of Renewable Energy Sources" No. ZRU-539 dated May 21, 2019, the decree of the President of the Republic of Uzbekistan PP-57 "On Measures to Accelerate the Introduction of Renewable Energy Sources and Energy-Saving Technologies in 2023" dated February 16, 2023, the resolution of the Cabinet of Ministers of the Republic of Uzbekistan No. PKM-568 "Procedure for Compensating Uzbekistan Citizens for Part of the Costs of Acquiring Renewable Energy Sources" dated October 5, 2022, and others.

Overall, research indicates that considering the long-term perspective and current trends in energy price escalation, utilizing solar panels in sprayers can be economically advantageous [9-13].

Conclusion.

Solar-powered sprayers represent an innovative solution that can aid in pest control effectively. They can efficiently distribute pesticides or other plant protection agents, minimizing environmental impact and human health risks.

From an economic standpoint, solar-powered sprayers offer a favorable investment. They utilize renewable solar energy, thus reducing fuel or electricity expenses. Additionally, such sprayers require minimal maintenance, further lowering operational costs. In the long run, these savings can significantly exceed the initial acquisition and installation costs of the equipment.

In terms of efficiency, solar-powered sprayers also boast several advantages [14-16]. They can operate throughout the day with sufficient sunlight, ensuring continuous spraying. This is particularly crucial during peak pest activity periods or seasons requiring intensive hydration. Moreover, such sprayers are typically equipped with automatic control systems, enabling precise dosing of the sprayed solution, considering current weather conditions and plant growth stages. This enhances the efficiency of pesticide and water usage, reduces the risk of overhydration or underhydration of plants, and helps mitigate adverse environmental impacts.

Thus, solar-powered sprayers represent a promising direction in agriculture. They combine economy, efficiency, and environmental friendliness, meeting the demands of development. All of this will help maximize the potential of solar sprayers and contribute to the sustainable development of agriculture. Therefore, it is crucial to continue research and development in this field to enhance these technologies and make them accessible to farmers worldwide.

List of references

1. Zokhidov, I. Z. (2023). STUDIES AND ANALYSIS OF A SOLAR-POWERED PESTICIDE SPRAYER. Educational Research in Universal Sciences, 2(16), 353-358.
2. A.A.Boqiev, I. Z. Z. (2022). BOGDORCHILIK VA ISSIQXONALARDA O'SIMLIKLARGA PURKAB ISHLOV BERUVCHI ELEKTR MEXANIK QURILMA. EURASIAN JOURNAL OF MEDICAL AND NATURAL SCIENCES, 2(11), 232–235. <https://doi.org/10.5281/zenodo.7214043>
3. A.A.Bokiyev, & I.Z.Zokhidov. (2022). "MOBILE ENERGY TECHNOLOGICAL TOOLS BASED ON RENEWABLE ENERGY SOURCES". INTERNATIONAL JOURNAL OF RESEARCH IN COMMERCE, IT, ENGINEERING AND SOCIAL SCIENCES ISSN: 2349-7793 Impact Factor: 6.876, 16(09), 10–15. Retrieved from <https://www.gejournal.net/index.php/IJRCIESS/article/view/970>
4. Smith, J. et al. (2020). "Impact of Modern Sprayers on Agricultural Efficiency." Journal of Agricultural Engineering, 45(2), 123-135.
5. Green, R. (2018). "Advancements in Agricultural Sprayer Technology." Agricultural Innovations Conference Proceedings, 10-22.
6. Brown, A. (2019). "Solar-Powered Sprayers: A Sustainable Solution for Agriculture." Sustainable Farming Journal, 22(3), 45-57.
7. Zheng, L., Sun, H., Xia, X., Wang, Y., Ma, Q., Li, G., & Li, L. (2019). Parameters optimization of an intelligent agricultural UAV sprayer based on response surface methodology. Computers and Electronics in Agriculture, 163, 104844.
8. Zhang, L. et al. (2023). "Performance Evaluation of Solar-Powered Sprayers in Agriculture: A Comparative Study." Agricultural Engineering Journal, 78(4), 345-362.
9. Zokhidov Iqboljon Zokirjonovich. (2022). ҚИШЛОҚ ХЎЖАЛИГИ МАШИНАЛАРИНИ ӘЛЕКТРЛАШТИРИЛИШИ. <https://doi.org/10.5281/zenodo.7227593>
10. ZOXIDOV, I. (2023). Perspektivi razvitiya vozobnovlyayemoy energetiki. Fergana Polytechnic Institute.
11. ZOXIDOV, I. (2023). Analiz primeneniya traktorov s elektroprivodnimi dvigatelyami v selskom xozyaystve. Fergana Polytechnic Institute.
12. ZOXIDOV, I. (2023). Preimushhestva samoxodnogo opriskivatelya na osnove ekologicheski chistix alternativnix istochnikov energii. I.KARIMOV NOMIDAGI TOSHKENT DAVLAT TEXNIKA UNIVERSITETI.
13. ZOXIDOV, I. (2023). ENERGIYA RESURSLARNI TEJASH, ATROF MUHITGA ZARARNI KAMAYTIRISHDA ELEKTR MASHINA VA MEXANIZMLARNING O'RNI. Fergana Polytechnic Institute.
14. ZOXIDOV, I. (2023). Primenenie resursosberegayushix texnologiy v selskom xozyaystve. Fergana Polytechnic Institute.
15. Uzbekov, M., Boynazarov, B., Nasretdinova, F., Zoxidov, I., Qodirov, A., & Hamidjonov, Z. (2024, November). Development and experimental research of solar air collector. In E3S Web of Conferences (Vol. 508, p. 02005). EDP Sciences.
16. Uzbekov, M., Boynazarov, B., Nasretdinova, F., Zoxidov, I., Ashurov, A., & Hamidjonov, Z. (2024, November). Energy saving using solar air heater collectors. In E3S Web of Conferences (Vol. 508, p. 02001). EDP Sciences.