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Abstract  
 
A mathematical model of heat transfer in porous media with phase transitions is formulated to 
describe the processes of high-speed melting of a powder layer of binary metal alloys with peritectic 
transformation. The modeling of nonstationary thermal fields was carried out using a two-phase zone 
model [2], extended to the case of high rates of medium heating and heat transfer by the mechanisms 
of thermal conductivity and radiation. The following physical assumptions were used in the 
formulation of the system of equations 
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A mathematical model of heat transfer in porous media with phase transitions is formulated to 
describe the processes of high-speed melting of a powder layer of binary metal alloys with peritectic 
transformation. The modeling of nonstationary thermal fields was carried out using a two-phase zone 
model [2], extended to the case of high rates of medium heating and heat transfer by the mechanisms 
of thermal conductivity and radiation. The following physical assumptions were used in the 
formulation of the system of equations: 
• the cooling rates of the alloy Vc > 103 K/s, therefore, when describing the kinetics of solidification 
on a macroscopic scale, the zonal liquation of the components is neglected. Therefore, the use of the 
thermal equation of the quasi-equilibrium zone is justified; 
• at the observed cooling rates, the peritectic reaction is suppressed, therefore, at T < TP, where TP is 
the temperature of peritectic crystallization, the peritectic phase is formed directly from the liquid; 
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• heat transfer mechanisms take into account: (a) heat transfer by diffusion mechanism, (b) penetration 
of laser radiation into the porous medium at the heating stage, (c) evaporation of metal from the 
sample surface, (d) radiation cooling of the surface, (e) release of latent heat of the phase transition. 
Taking into account the accepted assumptions, the thermal conductivity equation can be reduced to 
the thermal equation of the two-phase zone model [2]: 
                       					𝛹(𝑇) !"

!#
= 𝒶(𝜀$ , 𝜀%)𝛻&𝑇 + 𝐹(𝑞'),																																																		(1) 

where Ψ is the dimensionless effective heat capacity, taking into account the release of latent heat of 
the phase transition; T is the absolute temperature; t is the time; a is the thermal conductivity 
coefficient; ev and εσ are the porosity characteristics of the powder layer, defined as the volume 
fraction of pores and the proportion of pores in a flat section, respectively; ; F = αqL is the intensity 
of the volumetric heat source associated with with the power of laser exposure at different depths y 
of the powder layer. Here qL and α are the energy flux density of laser radiation and the absorption 
coefficient of light radiation in the local volume of the powder layer, respectively. The coefficient α 
depends on both the temperature and the phase composition of the local volume, determining in the 
model the change in the depth of penetration of laser radiation during the melting of particles and the 
change in the morphology of the porous body. Since it was not possible to measure this dependence 
experimentally, an estimated value of α = const was chosen based on data on the depth of the sintered 
layer under various processing modes. The geometry of the computational domain Ω is shown in 
Figure 4.1, where the powder layer and the substrate are represented by the subdomains ΩP and ΩS. 
Absorption upon penetration of laser radiation into a substance is characterized by a law functionally 
close to Booger's law for optically homogeneous media, written for the selected coordinate system 
(Fig. 4.1) in the form: 

																																	𝑞'(𝑡, 𝑥, 𝑦) = 	𝑞'((𝑡, 𝑥)|)*(	𝑒𝑥𝑝(−𝛼𝑦),																																						(2) 
where 𝑞'((𝑡, 𝑥)|)*(	is the density of the irradiation energy flux on the sample surface. The 
dependence of thermal conductivity on porosity was calculated by an equation similar to the approach 
[3]: 
                                            𝑎 = 𝑎(
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,                                                               (3) 

where  𝑎(	is the thermal conductivity of a continuous medium. 
The function Ψ of the dimensionless heat capacity is generally defined by the expression 𝛹(𝑇) 	=
	1	 + 	𝜃	(𝑑𝑆/𝑑𝑇), where θ is the adiabatic temperature, S is the volume fraction of the liquid phase in 
the local volume, the heat capacity of which is calculated. The expression for Ψ, obtained by the 
authors [2] in the approximation of a small zonal liquation of impurity components, was used in the 
work: 
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Figure 1. The calculated area Ω is divided into two subdomains ΩP and ΩS corresponding to the 
powder layer and the substrate. The boundary conditions are determined by equations (5)–(12). 
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where C is the concentration of the impurity (non–basic) component, k = CS/CL is the distribution 
coefficient obtained from the phase diagram and equal to the ratio of CS and CL concentrations at the 
solid–melt interface, 𝑇'	 = 	𝜑(𝐶) is the equation describing the dependence of the liquidus 
temperature TL (the phase equilibrium line determined by the alloy state diagram) from the 
concentration. For a linear phase diagram, the liquidus temperature is given by 𝑇' 	= 	𝑇1 	+
𝑚𝐶, где	𝑇1, where 𝑇1  is the crystallization temperature of the main component, m is the tangent of 
the slope of the liquidus line. At high speeds of the solidification front movement observed in laser 
reflow experiments, it is necessary to take into account relaxation processes in the diffusion transfer 
of impurities and the dependences of k and m on the degree of deviation from thermodynamic 
equilibrium both at the interface and in the melt volume [4]. In this work, the equilibrium values of 
the parameters k and m obtained from the equilibrium phase diagrams were used [1]. The expansion 
of the model taking into account locally nonequilibrium diffusion is the subject of further research. 
The thermal effect of laser radiation in equation (1) is taken into account by a volumetric source F, 
depending on the flow 𝑞'(𝑡, 𝑥, 𝑦), determined, in turn, by the flow 𝑞'((𝑡, 𝑥)	of heat on the sample 
surface in equation (2). The function 𝑞'((𝑡, 𝑥)|𝑦 = 0 is defined by a function periodic in time and 
dependent on spatial coordinates, reflecting both the pulsed nature of the laser radiation and the 
distribution of the radiation density inside the laser beam: 
							𝑞'((𝑡, 𝑥)|)*( =

2$%&
3'
𝑔(𝑥)𝜉(𝑡), 𝑔(𝑥) = 𝑔4(𝑥) или 𝑔5(𝑥),                    (5) 

																									𝑔4(𝑥) = L+
&
M𝐻(|𝑥 − 𝑋6| − 𝑅6),                                             (6) 

																							𝑔5(𝑥) =
3'
(

(&8%'
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exp T− (:,;')(

&%'
( U,                                           (7) 

																																	𝜉 = 𝐻(𝜏& − 𝑡𝑚𝑜𝑑𝜏+).                                                      (8) 
where Pact is the actual irradiation power of the surface, g(x) is the distribution function of the flux 
density in the laser beam, ξ is the function of the U-shaped modulation of laser radiation, Rb, Vb, X0 
and Xb = X0 + Vbt is the radius, velocity, initial position and current coordinate of the center of the 



337 | EXCELLENCIA: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF EDUCATION                           
https://multijournals.org/index.php/excellencia-imje 
 

laser beam, respectively, σb is the standard deviation, τ1 and τ2 are the time (period) between pulses 
and the duration of one pulse, H is the Heaviside function. The function g is given as a homogeneous 
or Gaussian distribution by choosing the functions gu or gn, respectively, depending on the 
characteristics of the focusing system. The normalization of the function g is carried out from the 
condition that 90% of the laser radiation power falls on the surface element limited by the effective 
radius Rb of the laser beam. Figure 2 shows graphs of the functions ξ, gu and gn that modulate the heat 
flow relative to the temporal and spatial coordinates. 
Convective and radiative cooling occurs on the surface of ∂1ΩP of the sample in accordance with [5] 
						𝑛Z⃗ ∙ 𝑞⃗|<)=+ = ℎэфф^Т − 𝑇окр` + ϵ𝜖CD^𝑇E − 𝑇окрE `,                                 (9) 

where ϵ is the surface emission coefficient, 	Вт	м,&К,E is the Stefan-
Boltzmann constant, Current Tокр is the ambient temperature, and the normal vector 𝑛Z⃗  is directed from 
the powder layer into the gas medium. The evaporation of metal from the surface is taken into account 
in the model by means of the effective heat transfer coefficient heff: 

																ℎэфф(𝑇) = 	ℎ	конв +	T
1
2U
(ℎ	кип −	ℎконв)𝑡𝑎𝑛ℎ T

𝑇	 −	𝑇кип
∆𝑇ℎ U,																(10) 

where the transition from convective cooling of the surface, determined by the coefficient hконв of 
heat exchange due to convection in a gaseous medium, to cooling due to evaporation, determined by 
hкип, occurs near the boiling point of Tкип in the temperature range ∆Th. Taking into account the hконв 
of the chamber purge rate, heat transfer during laser treatment in an inert medium can be further 
refined. The boundary conditions on the lower surface of the substrate are given by 
                               𝑛Z⃗ ∙ 𝑞⃗|𝜕зΩK = ℎконв(𝑇 − 𝑇окр)                                                (11) 
The interface between the powder layer and the substrate is characterized by the continuity of 
temperature and heat flow: 
                         T|∂3ΩP = T|∂1ΩS, k (∂T/∂n)|∂3ΩP = k (∂T/∂n)|∂1ΩS.                                   (12) 
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(b) 
Figure 2. (a) Modulation of the laser beam flux during pulse processing by a function ξ, depending 
on the dimensionless time t/τ2, where τ1 and τ2 are the time (period) between pulses and the duration 
of one pulse, respectively. (b) The distribution g of the heat flux density as a function of the 
dimensionless distance (x − Xb)/Rb  from the center of the laser beam. The function g can be given in 
the form of a homogeneous gu or normal gn distribution. 
At the vertical boundaries ∂2ΩP and ∂4ΩP of the powder layer and the boundaries ∂2ΩS and ∂4ΩS of the 
substrate, periodic boundary conditions are set, similar to equations (12), when the temperature and 
fluxes at opposite boundaries are equated to reduce the estimated time. The initial conditions are 
accepted in the form of 
																																																		𝑇|=+=,/= 𝑇нач                                                                                   (13) 
where Tнач is the temperature to which the sample is preheated. 
Thus, the system of equations (1)–(13) describes the process of pulsed laser treatment of the powder 
layer and is closed. The numerical model was implemented in the COMSOL MultiPhysics 
commercial computing package designed to solve physical and engineering problems. The unsteady 
heat equation for the boundary value problem was calculated by the finite element method. 
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