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Abstract

The paper describes methods for approximating functionals from diffusions and from an optimally
controlled diffusion process, as well as methods for approximating diffusion processes that are
solutions of stochastic differential equations of Ito, both controlled and uncontrolled. Since many of
the functionals that we will calculate and approximate are in fact weak solutions of partial differential
equations (the weak solution can be represented as some functional of a suitable diffusion process),
the methods for approximating weak solutions are closely related to the methods for approximating
diffusion processes and their functionals. In addition, the appearance of partial differential equations,
which, at least formally, satisfy the functionals we are interested in, suggests numerical methods for
solving these problems.

Key words: bounded area, parabolic equation, parabolic equation, Cauchy problem, Wiener process,
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Let G be a bounded area in R" | Q=G*[T,.] and a cylinder in R™  Let's denote /' =2\2,
Consider the first boundary value problem for a parabolic equation:

n 2 n
%u+%2a” (t.x) 6>(<3‘;x" +iZ=l:bi (t,x)%+c(t,x)u+g(t,x)u =0.

i,j=1

(1.1)
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(t.x)€Q, ulr=ep(t,x) (1.2)

It is assumed that the coefficients satisfy the condition of strict ellipticity in Q In addition, we assume
that the conditions that ensure sufficient smoothness of the solution of problem (1.1) up to the
boundary are satisfied.

The solution of problem (1.1) admits a probabilistic representation
u (t1 X) =E [(0(71 Xix (T))Yt,z,l (7)+ Zi 10 (T)] , (1.3)
Xx(8), Y y(S), Z, ., ,(S), S =t,

where XY tx.y.2

stochastic differential equations
dX =b(s,X)ds+o(s, X)dw(s), X(t)=x,
dY =c(s,X)Yds, Y(t)=y, dZ=g(s,X)Y ds, Z(t)=z2,

is the solution of the Cauchy problem for a system of

(1.4)

(t.X) €Q.7 _the moment when the trajectory (8, X,(3)) reaches the boundary of .

In@(@) = (@"(@)) ... (@"(Q)" standard Wiener process, Y and Z- scalars P(SX). n. g4
dimensional column vector made up of coefficients b'(s, %), XN _ the matrix (X is obtained

o(s,X)o’ (s,x) =a(s, X) a(s,x) ={a’ (s, 0} i, j

from the representation =ln 1o implement the

representation (1.3), we need an approximate construction of the trajectory (8, X(s)),

It is known that the solution of the general Dirichlet problem is related in a certain way to a system
of stochastic differential equations. Using some approximation methods, we can construct a Markov
chain with absorption, which approximates the solutions of this system so that the mathematical
expectation of a certain functional from the trajectories of the chain is close to the solution of
boundary value problems for linear parabolic and elliptic equations of the second order. If a
probabilistic representation of the Cauchy problem is used, then it is possible to construct direct
approximations for solving the Cauchy problem, which are based on the constructed approximation
method. However, if we want to approximate the solution of a parabolic or elliptic equation in a
bounded domain in a similar way, then we need to have an approximation of the time of the first exit
of diffusion through the boundaries of the domain.

: : . B, =B(w(s),s <t .
Let W(.) I' be a dimensional standard Wiener process, and ( ( ) ) Non-proactive

(relatively W(D)) solutions to the equation

X(t):x+Jf(X(s),s)ds+Jo(X(s),s)dw(s) 15

Define a large class of Markov processes. Equation (1.5) is often written in symbolic differential form
dx = f (x,5)gs+o(xs)dw(s)

Such processes are widely used in stochastic control theory and other applications in engineering,

physics, and economics, and describe many practically useful processes. Functionals from these

processes are solutions of elliptic and parabolic partial differential equations, and therefore the study
of the properties of such processes provides a lot of useful information about the properties of partial
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differential equations. In fact, the relations between the process (1.5) and partial differential equations
will often be used in the study of process approximations and differential equations.

The computational methods that we will use are identical to the methods of computing functionals
from finite Markov chains. We will obtain Markov processes of diffusion processes, roughly
speaking, in the following way. Let's take a partial differential equation, which, at least formally, is
satisfied by the functional of the diffusion process, and write the corresponding emu equation in finite
differences. If the approximations are chosen carefully (but in an absolutely natural way), then the
finite difference equation will actually turn out to be an equation for the functional of a Markov chain,
and its transition probabilities will be coefficients of the finite difference equation.

When studying dynamical systems using computer technologies, the method of statistical tests
(Monte Carlo method) is often used. The application of this method to the study of systems defined
by stochastic differential equations requires their replacement with the Euler and Runge-Kutta
difference schemes. Such substitutions are considered in the works. However, the known error
estimates of difference methods for solving deterministic equations cannot be used in digital modeling
of stochastic equations due to the non-differentiability of almost all their solutions. In this paper, a
stochastic analog of the Taylor series is obtained for estimating errors, which allows us to decompose
the solution of a stochastic differential equation into a series with respect to nonlinear functionals
from the Wiener process.

The main attention in the works on numerical integration of stochastic differential equations is paid
to the approximation of solutions in the root-mean-square sense. Meanwhile, in cases where the
modeling of solutions is intended for the use of Monte Carlo methods, it is not necessary to solve a

very complex problem of finding root-mean-square approximations. If X (t) -is exactly the solution,

and X (t)-is an approximate solution, then for many problems of mathematical physics it is only

necessary that the mathematical expectation Ef (X (t))beat close to Ef (X (t)) I.e., that X (t) it

beat close to X (t) in the weak sense.
Of course, when [1] is numerically integrated in the root-mean-square sense with a certain order of
accuracy, approximations in the weak sense are obtained with the same order of accuracy. Since if

Z o 2\V2 o
E(‘X(t) X(t)‘ ) =0 (h ) then for any function f satisfying the Lipschitz condition ,
equality E(f(X(t))— f (X(t)))zO <hIO)holds

Akw(h) - W(tk + h) B W(tk) (and even by modeling simpler random variables), it is possible to
construct a second-order accuracy method in a weak sense. While in the root-mean-square sense, this
method cannot be used to construct a method higher than the first order of accuracy. But even this is
not the main factor that stimulates the development of methods for constructing weak approximations.
It is known that even in root-mean-square systems with multiple noises, a difficult problem of
. . JowWdw(v) .
modeling random variables of the form Jo arises . This problem of modeling complex
random variables can be avoided by integrating in a weak sense.

, however, as shown in modeling
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If we keep in mind the applications of the Monte Carlo method that show their effectiveness in
multidimensional problems, then the development of numerical integration methods in the weak sense
is very relevant just for systems with many noises.
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