

Volume 02, Issue 04, 2024 ISSN (E): 2994-9521

Representation of the Middle Line of a Trapeziod Through the Sides

Ghafforov Husayn Aliyarovich

Tashkent State Agrarian University

Teacher of the Department of Mathematics and its Teaching Methodology, Faculty of Mathematics and Informatics, Termiz State Pedagogical Institute.

Jurayev Ilhom Ruziboyevich

Head of the Department of Mathematics and its Teaching Methodology, Faculty of Mathematics and Informatics, Termiz State Pedagogical Institute.

avazovazizbek@internet.ru

Khudoyorova Zhangil Ashurovna

Termiz State Pedagogical Institute, Faculty of Mathematics and Informatics 60110600- 3rd level student of Mathematics and Informatics.

Abstract

This article describes the method of expressing the second midline of a trapezoid using the property of the median of a tringle in terms of the sides the trapezium.

Key words: triangle median property, proof, sides of a trapezoid, equal sections.

Introduction

We all know that there is a formula for expressing the median of a triangle by its sides. It looks like this:

$$m_c = \frac{1}{2} * \sqrt{2a^2 + 2b^2 - c^2} \tag{1}$$

We present the proof of formula (1). For this, we will first use Stuart's theorem and study its proof.

$$BD^{2} = \frac{BC^{2}\square AD}{AC} + \frac{AB^{2}\square DC}{AC} - AD\square DC$$
 (2)

Let's get acquainted with the proof of Stuart's theorem:

Proof: Let ABC be an arbitrary triangle. We make an arbitrary cut from one end of the triangle to the other. We apply the theorem of cosines to the 2 resulting triangles. (**Figure 1**)

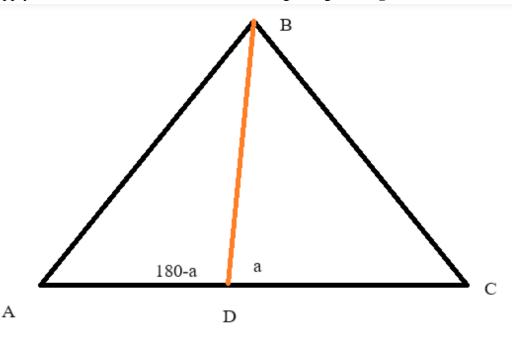


Figure 1

$$AB^{2} = AD^{2} + BD^{2} - 2AD\Box BD\Box \cos(\pi - \varphi)$$

$$BC^2 = DC^2 + BD^2 - 2DC\square BD\square \cos \varphi$$

Of both $\cos \varphi$ find and equate the expressions:

$$\cos(\pi - \varphi) = -\cos\varphi$$

$$\cos \varphi = \frac{BD^2 + DC^2 - BC^2}{2BD\Box DC}$$

$$\cos \varphi = \frac{AD^2 + BD^2 - AB^2}{-2BD\Box AD}$$

$$\frac{BD^2 + DC^2 - BC^2}{2BD\square DC} = \frac{AD^2 + BD^2 - AB^2}{-2BD\square AD}$$

$$-(BD^{2} + DC^{2} - BC^{2})\Box AD = (AD^{2} + BD^{2} - AB^{2})\Box DC$$

$$AD^{2}\square DC + BD^{2}\square DC - AB^{2}\square DC = -BD^{2}\square AD - DC^{2}\square AD + BC^{2}\square AD$$

$$AD^2\square DC + BD^2\square DC + BD^2\square AD + DC^2\square AD = BC^2\square AD + AB^2\square DC$$

$$AD\square DC\square (AD + DC) + BD^2\square (AD + DC) = BC^2\square AD + AB^2\square DC$$

$${AD + DC = AC}$$

$$AD\Box DC\Box AC + BD^2\Box AC = BC^2\Box AD + AB^2\Box DC$$

$$BD^2 \square AC = BC^2 \square AD + AB^2 \square DC - AD \square DC \square AC$$

$$BD^{2} = \frac{BC^{2} \square AD}{AC} + \frac{AB^{2} \square DC}{AC} - AD \square DC$$

the theorem is proved.

We can also prove the formula for the median of an arbitrary triangle using Stuart's theorem. (**Figure 2**)

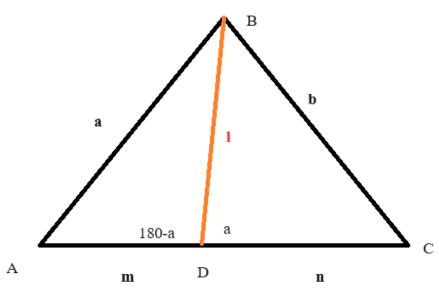


Figure 2

$$BD^{2} = \frac{BC^{2}\Box AD}{AC} + \frac{AB^{2}\Box DC}{AC} - AD\Box DC$$

We write down Stuart's theorem according to our drawing.

$$l_c^2 = \frac{a^2 \Box n}{c} + \frac{b^2 \Box m}{c} - m \Box n$$

Let us consider the proof of this median formula.

$$m = \frac{c}{2}$$
 $n = \frac{c}{2}$

$$m_c = l_c$$

$$l_c^2 = \frac{a^2 \Box c}{2 \Box c} + \frac{b^2 \Box c}{2 \Box c} - \frac{c}{2} \Box \frac{c}{2}$$

$$m_c^2 = \frac{a^2 + b^2}{2} - \frac{c^2}{4}$$

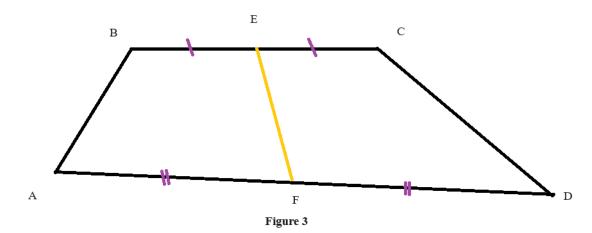
$$m_c^2 = \frac{2(a^2 + b^2) - c^2}{4}$$

$$m_c = \frac{1}{2} \sqrt{2 \left(a^2 + b^2\right) - c^2}$$

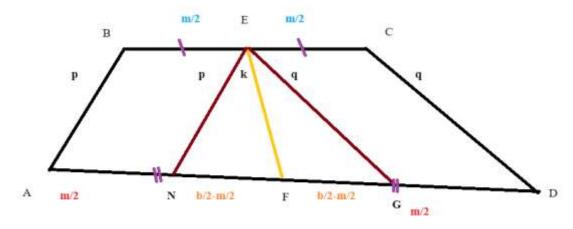
$$m_c = \frac{1}{2} \Box \sqrt{2 \Box (a^2 + b^2) - c^2}$$

The median formula was proved.

Now, let us be given a trapezoid ABCD. (Figure 3)

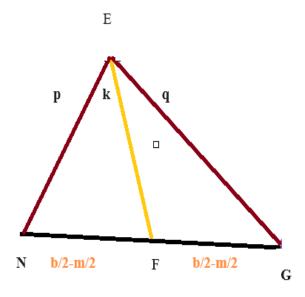


Here, k- is the section connecting the middle of the bases of the trapezoid ABCD, or we can take it as the second middle line of the trapezoid. BE=EC=AE=ND=m/2; AB=EF=p; EN=CD=q; We draw sections EF and EG parallel to sides AB and CD and ending at point E. (**Figure 4**).



Future 4

Let's pay attention to the triangle ENG. (Figure 5)



Future 5

Based on the above formula for finding the median of a triangle,

$$l = \frac{1}{2} * \sqrt{2p^2 + 2q^2 - (b - m)^2} = \frac{1}{2} * \sqrt{2p^2 + 2q^2 - b^2 - m^2 + 2mb} =$$

$$= \sqrt{\frac{1}{2}p^2 + \frac{1}{2}q^2 - \frac{1}{4}b^2 - \frac{1}{4}m^2 + \frac{1}{2}mb}$$
(3)

$$l = \sqrt{\frac{1}{2}p^2 + \frac{1}{2}q^2 - \frac{1}{4}b^2 - \frac{1}{4}m^2 + \frac{1}{2}mb}$$

REFERENCES:

- 1. Погорелов "Геометрия" Ўрта мактабнинг 7-11 синф ўкувчилари учун ўкув қўлланма. Тошкент: "Ўқитувчи"- 1990.
- 2. Nazarov H.H., X.O.Ochilova va boshqalar "Geometriydan masalalar toʻplami 1 qism" Toshkent "Oʻqituvchi" nashriyoti tuzatilgan 1997 yil
- 3. B.Xaydarov, N.Toshtemirova, I.Asrorov "Geometriya umumiy oʻrta ta'lim maktablarining 7-sinflari uchun" Toshkent Respublika ta'lim markazi-2022