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Abstract 

 

This article describes the method of expressing the second midline of a trapezoid using the property 

of the median of a tringle in terms of the sides the trapezium. 
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Introduction 

We all know that there is a formula for expressing the median of a triangle by its sides. It looks like 

this: 

2 2 21
* 2 2 (1)

2
cm a b c  

 
We present the proof of formula (1). For this, we will first use Stuart's theorem and study its proof. 
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Let's get acquainted with the proof of Stuart's theorem: 
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Proof: Let ABC be an arbitrary triangle. We make an arbitrary cut from one end of the triangle to the 

other. We apply the theorem of cosines to the 2 resulting triangles. (Figure 1) 
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Of both cos  find and equate the expressions: 
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the theorem is proved. 

We can also prove the formula for the median of an arbitrary triangle using Stuart's theorem. (Figure 

2) 
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We write down Stuart's theorem according to our drawing. 
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Let us consider the proof of this median formula. 
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The median formula was proved. 

Now, let us be given a trapezoid ABCD. (Figure 3) 

 
Here, k- is the section connecting the middle of the bases of the trapezoid ABCD, or we can take it 

as the second middle line of the trapezoid. BE=EC=AE=ND=m/2; AB=EF=p; EN=CD=q; 

We draw sections EF and EG parallel to sides AB and CD and ending at point E.  (Figure 4). 
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Let's pay attention to the triangle ENG. (Figure 5) 

 
Based on the above formula for finding the median of a triangle,
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