

Location of Historical Baths of Namangan Region on a City Scale

Khatamova Durdona Madaminovna¹

¹ Namangan Institute of Engineering and Construction

Abstract:

In this article, the service processes of ancient baths located in Namangan region are studied and their specific aspects are identified. A brief history, construction process, architectural solutions, and some healing properties of baths, which are one of the monuments of ancient architecture, are also covered. The conducted long-term scientific research was prepared based on several visits to study and check these monuments and scientific sources of scientists in the field.

Keywords: Namangan, bath, dome, treatment room, steam room, dressing room, cold room, hot room, massage room, washroom.

Introduction. Studying our historical heritage, which is the foundation of the ideology of national independence, is one of the main conditions for raising the morale of society. Cultural heritage raises the level of people, enriches their lives intellectually and emotionally, and serves as an inexhaustible source of knowledge. The study of architectural monuments serves as a basis for carrying out restoration or repair work, if necessary, in order to leave them for future generations. It is also important to scientifically study the historical baths built in the Fergana Valley, particularly in the Namangan region, and to summarize the results of the research to create the necessary database. This serves to expand tourism opportunities and increase economic opportunities in the regions of the country (Fig. 1).

Figure 1. Location of historical baths in Namangan region.

Namangan region also has a number of historical baths, which also have their own architecture and typology. One such bathhouse is the Gungalak underground bathhouse, which has an ancient history and is located underground in the heart of the city of Kosonsoy, on the banks of the Solim stream, in front of the Jome' mosque. Not many people know that this bathroom exists. This bathhouse has been in public service for several centuries. When studying the history of this bathhouse, it was found that the bricks used belong to the 9th-10th centuries, the era of the Karakhanids. The thickness of the bathroom walls is 1.2 meters, and the height of the domes is between 2.5-3.1-4 meters, depending on the function of the washrooms. The design solution of the bathroom has its own solution. This unique structure is not only a place of cleanliness and purification, but also differs from other baths in its healing properties. Its healing properties are due to the fact that it was built in a unique architectural style. Because the steam room, greenhouse, washing rooms, and hot water boilers of this bathhouse are also located underground[1].

On the ground surface, only the four domes of the structure and smoke exits are visible. When you look at its sections, especially the heating ways, you will witness how deeply our ancestors had architectural knowledge, how they found solutions to complex engineering and architectural problems with their own simplicity. At the moment, we are surprised that such a complex structure is in service without any repairs. The fireplace is located in the southern part of the bathhouse, under the building, and the burning fire leaves the main chimney 15-20 meters away through 41 main underground chimneys (tunnels). Because the bathroom is underground, it doesn't have any other doors or windows except for one entrance. Well, it is natural that many people are interested in the question of where the light comes from. The light falls from a circular window located in the middle of the domes protruding above the ground and spreads equally in all four directions. Naturally, the windows are covered with glass. It makes one wonder what is the secret of the fact that the domes of the bathhouse have been withstanding the external influences, rain, snow, steam and hot humid air from the inside for several centuries. Unfortunately, this issue has not yet been fully explored by experts. There is no clear written information about when and by whom the underground bath was built. But based on some scattered reports and some traditions that are preserved among the people, it can be assumed that this structure was built at the same time as the mosque. The bathhouse is built in an ancient architectural style and is designed for heating with low fuel consumption. Hazan and hashak collected by sweeping the streets were used as the main fuel. It is said that once thoroughly heated, this bath retains its heat for a week. Latif's bathroom is located on Zirabulok street, Namangan city. Land area - 0.13 hectares. Currently, it belongs to a private entrepreneur. This monument is one of the preserved architectural monuments in the city of

Namangan.

The complex was built in the second half of the 16th century. Remains of 2 classical baths belonging to the Karakhanid era were found and studied in the Eastern Rabat region. Its plan and construction method are the same. The baths are built entirely of aerated brick, and with their internal structure are examples of the classic medieval bathhouse. In the bathroom, hot and cold water was delivered to the rooms using small diameter ceramic pipes embedded in the wall. The used water was poured into the sewers through sewers built of brick. One of them (eastern majnun) is fully opened due to its good preservation. The bathroom consists of 13 rooms and has 3 construction periods. Except for the 7th and 8th rooms of the bathhouse, all other rooms are considered hot rooms, most of them are located below the ground level. It was possible to quickly heat up the baths built in this style and keep the heat in them for a long time. Under the floor of all warm rooms, there are heat corridors ("mine") connected to the hearth and vertical heating inside the walls, the heat generated in the hearth is fully directed to the useful side. The 12th room of the bathhouse was called the gulakhana, where the fire was lit. The grass burning in the hearth and the heat generated from it is built in the form of a brick arch under the floor of the 4th room, 1 m high. width 0.60 m. He heated the floor and walls of the room through the corridors (mine) and the ceramic pipes installed in the wall. The temperature in the rooms was different. The 4th room near the hearth was considered the warmest and was entered after passing through several rooms. For example, a person who entered the bathroom gradually moved from a cold room to a warm room.

This, in turn, had a positive effect on the human body. Therefore, a person who entered such baths had a rest while bathing. The floor of the rooms is completely covered with baked bricks using special waterproof clay. However, only the floor of the 5th room is well preserved. The walls of the rooms are plastered with a special waterproofing plaster. In particular, it was observed that 52 similar plasters were stored on the northern wall of the 5th room. If we assume that the walls of the bathroom are plastered once every 4-5 years, then this bathroom will be in service for more than 200 years. The washing water used in the bath was poured into a special basin through a tazar made of baked bricks. There were 2 more similar baths in Rabod. The second bathroom (west) is located 30 m west of the first (east). Looking at its remains, it can be observed that both baths have the same plan and construction method. Similarly, the 3rd bathroom (north) is not open yet. Only the part of the sewage system, which was made of baked bricks, was opened, and it was directed towards the above-mentioned tashnov. In the middle of the three bathrooms, there is a tea room and a kitchen complex, from which only the remains of the walls have been preserved. Here people who came out of the bath ate and rested by drinking tea. Site V in the Western Rabat area (Axis II) contains the remains of a two-story grand residence, the remains of an iron and copper smelting furnace. It is known that in the 9th century, the building traditions of the early Middle Ages continued. The dwellings built during this period were mainly made of straw and raw bricks, with thick walls and two stories. In particular, a two-story residence dating back to the 9th-11th centuries was excavated in site V. However, only 5 rooms on the first floor of the building have been preserved.

During the archaeological research conducted in 2019, the remains of a magnificent residence built of baked bricks from the Karakhanid era were found and studied at site XXIV in eastern Rabat. It is known that the building was built in the 11th century using the Sinch method. The main part of the building is not preserved. Only, in one place, the upper part of the tashnov made of baked bricks and the earthen pipes leading from it to the ground were excavated.

In the past, when building a bathhouse, creative masters took into account the fact that it would be a place for people to relax, regain strength and restore health.

Summary. Baths built during the former Soviet regime are quite different in terms of wellness and the composition of rooms than the old baths. The main essence of old baths is that they consist of

rooms whose temperature exceeds each other. Several such baths are still operating in Namangan region today. Studying these baths is one of the urgent tasks of today.

References:

1. Bayboboeva Firuza Nabijonovna. (2023). ANALYSIS OF PRIVATE ENTERPRISE OPERATIONS AND THE ORGANIZATION OF ECONOMIC SECURITY. *Scientific Impulse, 1(10)*, 1476–1482. Retrieved from <http://nauchniyimpuls.ru/index.php/ni/article/view/9688>
2. Sultonboyevich, A. A. (2023). CALCULATION, DESIGN AND IMPLEMENTATION OF MULTI-LAYER HEAT-RESISTANT REINFORCED CONCRETE STRUCTURE. *Journal of Advanced Zoology, 44*, 2917-2926.
3. Байбобоева, Ф. (2023). KORXONANING IQTISODIY XAVFSIZLIGINI TA'MINLASHNING YO 'NALISHLARI VA FUNKTSIONAL ELEMENTLARI. *Economics and Innovative Technologies, 11(3)*, 262-268.
4. Sultonboyevich, A. A. (2024). Temperature and Moisture-Deformations of High-Temperature-Resistant Concrete Under Single Impact of Water and Temperature. *European Journal of Contemporary Business Law & Technology: Cyber Law, Blockchain, and Legal Innovations, 1(2)*, 5-8.
5. Razzakov, S., & Abdurakhmonov, A. (2020). HEAT-RESISTANT REINFORCED CONCRETE SLAB IN KILNS. *SCIENCE AND INNOVATIVE DEVELOPMENT, 3 (3)*, 113–119.
6. Sultonboevich, A. A., & Abdurauf o'g'li, A. I. (2023). WAYS TO REDUCE HYDRATION AND CRACKING OF CONCRETE IN THE PRODUCTION OF SPECIAL REINFORCED CONCRETE PRODUCTS. *British Journal of Global Ecology and Sustainable Development, 16*, 5-9.
7. Abdurahmonov, A., Madamiovna, K. D., & Egamberdiyeva, T. (2023). High Temperature Resistant Reinforced Concrete Made on the Basis of Industrial Waste. *Best Journal of Innovation in Science, Research and Development, 2(3)*, 26-33.
8. Abdurahmonov, A., Madamiovna, K. D., & Egamberdiyeva, T. (2023). Technology of Manufacturing Technology of Pre-Tensioned Intermediate Plate by Continuous Molding Method. *Best Journal of Innovation in Science, Research and Development, 2(3)*, 34-40.
9. Байбобоева, Ф. (2023). KORXONANING IQTISODIY XAVFSIZLIGINI TA'MINLASHNING YO 'NALISHLARI VA FUNKTSIONAL ELEMENTLARI. *Economics and Innovative Technologies, 11(3)*, 262-268.
10. Байбобоева, Ф. (2023). ТАДБИРКОРЛИК СУБЪЕКТЛАРИ ИКТИСОДИЙ ХАВФИЗЛИГИНИ ТАЪМИНЛАШДА МОЛИЯВИЙ ХАВФИЗЛИК МАСАЛАЛАРИ. *Economics and Innovative Technologies, 11(2)*, 107-112.
11. Nabijonovna, B. F. (2020). Support for small business and private entrepreneurship in Uzbekistan. *ECLSS Online 2020b*, 524.
12. Nabijonovna, B. F. SECURITY OF ECONOMIC ACTIVITY IN ENTERPRISES. *Process Management and Scientific Developments, 8*.
13. Erdős, F., Németh, R., & Bayboboeva, F. (2023). Virtual Teamwork in Gamified 3D Environment. *INFOCOMMUNICATIONS JOURNAL: A PUBLICATION OF THE SCIENTIFIC ASSOCIATION FOR INFOCOMMUNICATIONS (HTE), (SP)*, 15-20.

14. Buzrukov Zakiryo Sattikxo'jaevich, Xusainov Sarvarxon Muxammadalixon o'g'li, & Turg'unov Muxriddin. (2023). Binolarning seysmik chidamliligini oshirishning asosiy masalalari. *Ilmiy impuls*, 1 (10), 1491–1501. <http://nauchniyimpuls.ru/index.php/ni/article/view/9690>.
15. Бузруков, З. С., & Кохоров, А. А. У. (2022). Определение прочности кирпичной кладки на срез при сейсмическом воздействии. *Строительство и образование*, (2), 14-18.
16. Sattikxo'jaevich, B.Z., Mutalibovich, RS, Chorieva, V., & Abduhalilova, M. (2023). SHAHRLARNING EKOLOGIK MUAMMOLARINING SABABLARI VA YECHIM YOLLARI. *JURNAL OF ENGINEERING, MEXANICA VA ZAMONAVIY ARXITEKTURA*, (2), 175-178.
17. Бузруков, З. С. (2023). ОСОБЕННОСТИ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ СЕЙСМОСТОЙКИХ ЗДАНИЙ. *GOLDEN BRAIN*, 1(35), 195-200.
18. Бузруков, З. С., & Кохоров, А. А. У. (2022). Определение прочности кирпичной кладки на срез при сейсмическом воздействии. *Строительство и образование*, (2), 14-18.
19. Zokiryo, B., & Abdurahmonov, A. (2023). G'isht jangidan issiqlikka chidamli plitalarning ba'zi strukturaviy jihatlari. *E3S Web of Conferences* da (401-jild, 04065-bet). EDP fanlari.
20. Zokiryo, B., & Abdurahmonov, A. (2023). G'isht jangidan issiqlikka chidamli plitalarning ba'zi strukturaviy jihatlari. *E3S Web of Conferences* da (401-jild, 04065-bet). EDP fanlari.
21. Turg'unov Muxriddin Sotvoldi o'g (2024). Technologies for Professional Training Development of Future Builders-Engineers on the Basis of Innovation Approach. European Journal of Contemporary Business Law & Technology: Cyber Law, Blockchain, and Legal Innovations 2, 24-28
22. Abdumonon Kokhorov, Mukhriddin Turgunov (2023). THE ROLE OF MEDIA AND INFORMATIONAL EDUCATION IN THE TRAINING OF CIVIL ENGINEERS. Golden brain 35, 177-182
23. Turgunov Mukhriddin, Abdumonon Kokhorov (2023) MECHANISMS AND ADVANTAGE OF TEACHING STUDENTS TO CREATIVE THINKING THROUGH MEDIA EDUCATION METHODS IN THE INFORMATIONAL EDUCATIONAL ENVIRONMENT. Golden brain 35, 183-188
24. Turgunov Mukhriddin, Abdumonon Kokhorov (2023) FORMATION OF PROFESSIONAL COMPETENCES OF ENGINEER BUILDERS ON THE BASE OF INNOVATIVE TECHNOLOGIES. Golden brain 35, 171-176
25. Turgunov Mukhriddin, Abdumonon Kokhorov (2023) USE OF MEDIA EDUCATION IN DEVELOPING THE PROFESSIONAL TRAINING OF FUTURE CIVIL ENGINEERS IN THE INFORMATIONAL EDUCATIONAL ENVIRONMENT. Golden brain 35, 189-194
26. М. Тургунов Н.Р. Ходжиев (2021) ЭКОНОМИЧЕСКИЙ АНАЛИЗ ПО ГИДРОИЗОЛЯЦИИ ФУНДАМЕНТА ОБЩЕСТВЕННЫХ ЗДАНИЙ НАМАНГАНСКОЙ ОБЛАСТИ КАЧЕСТВО. ТЕХНОЛОГИИ. Инновации IV Международная научно-практическая конференция 2, 102-110
27. Turgunov Mukhriddin, Abdumonon Kokhorov (2023) FORMATION OF PROFESSIONAL COMPETENCES OF ENGINEER BUILDERS ON THE BASE OF INNOVATIVE TECHNOLOGIES. Golden brain 35, 171-176
28. М. Тургунов Н.Р. Ходжиев (2021) ЭКОНОМИЧЕСКИЙ АНАЛИЗ ПО ГИДРОИЗОЛЯЦИИ ФУНДАМЕНТА ОБЩЕСТВЕННЫХ ЗДАНИЙ НАМАНГАНСКОЙ

29. Abdurahmonov, A., Madamiovna, K. D., & Egamberdiyeva, T. (2023). Technology of Manufacturing Technology of Pre-Tensioned Intermediate Plate by Continuous Molding Method. *Best Journal of Innovation in Science, Research and Development*, 2(3), 34-40.

30. Madaminovna, K. D. (2022). CHARACTERISTICS OF FORMATION AND DEVELOPMENT OF THE ART OF BATHROOMING. *INTERNATIONAL JOURNAL OF RESEARCH IN COMMERCE, IT, ENGINEERING AND SOCIAL SCIENCES ISSN: 2349-7793 Impact Factor: 6.876*, 16(3), 24-28.

31. Madamiovna, K. D. (2023). Architecture of Traditional Baths in Central Asia. *Best Journal of Innovation in Science, Research and Development*, 2(3), 41-47.

32. Abdumatalibovich, K. A. (2023). PROFESSIONAL COMPETENCES OF MODERN BUILDERS. *Scientific Impulse*, 1(10), 1435-1442.

33. Abdumatalibovich, K. A., & Lutfillaevna, B. M. (2024). The Role of Bim Technologies in the Information System of Education. *European Journal of Contemporary Business Law & Technology: Cyber Law, Blockchain, and Legal Innovations*, 1(2), 9-13.

34. Бузруков, З. С., & Кохоров, А. А. У. (2022). Использование солнечной энергии в системах теплоснабжения. *Строительство и образование*, (1), 113-121.

35. Бузруков, З. С., & Кохоров, А. А. У. (2022). Определение прочности кирпичной кладки на срез при сейсмическом воздействии. *Строительство и образование*, (2), 14-18.

36. Abdumatalibovich, K. A., Abdushokirovna, M. Z., & Kh, A. (2023). IMPROVING VIRTUAL LESSON TEACHING METHODOLOGY BASED ON MODERN DIGITAL TECHNOLOGIES. *JOURNAL OF ENGINEERING, MECHANICS AND MODERN ARCHITECTURE*, (2), 187-190.

37. Akiner, M. E. (2016). Smart cities transformation in Turkey. *New arch-international journal of contemporary architecture*, 3(3), 8-16.

38. Рахимова, Г., Илхом, К., & Дедаханов, Б. (2023). ТАЪЛИМ ЖАРАЁНИДА ИННОВАЦИОН ТЕХНОЛОГИЯЛарНИНГ ЎРНИ. *Journal of new century innovations*, 21(3), 33-40.

39. Xatamovich, Q. D. (2023). MAMLAKATIMIZDA ARXITEKTURA-SHAHARSOZLIK SOHA MUTAXASSISLARI TAYYORLASHNI TAKOMILLASHTIRISH CHORALARI. *JOURNAL OF ENGINEERING, MECHANICS AND MODERN ARCHITECTURE*, (2), 179-181.

40. Egamberdiyeva, T. (2023). DESIGNING ENERGY EFFICIENT AND PASSIVE HOUSES. *GOLDEN BRAIN*, 1(35), 153-158.

41. Egamberdiyeva, T. (2023). ARCHITECTURAL AND CONSTRUCTION REQUIREMENTS IN THE DESIGN OF LOW-RISE RESIDENTIAL BUILDINGS. *GOLDEN BRAIN*, 1(35), 201-205.

42. Xatamovich, Q. D. (2023). MAMLAKATIMIZDA ARXITEKTURA-SHAHARSOZLIK SOHA MUTAXASSISLARI TAYYORLASHNI TAKOMILLASHTIRISH CHORALARI. *JOURNAL OF ENGINEERING, MECHANICS AND MODERN ARCHITECTURE*, (2), 179-181.

43. Abdurahmonov, A. (2023). THE EXPERIENCE OF THE WORLD AND THE WORLD'S EXPERIENCES ON THE CONSTRUCTION OF MULTI-STOREY PARKING. *GOLDEN BRAIN*, 1(35), 165-170.
44. Sultonboevich, A. A., & Abdurauf o'g'li, A. I. (2023). WAYS TO REDUCE HYDRATION AND CRACKING OF CONCRETE IN THE PRODUCTION OF SPECIAL REINFORCED CONCRETE PRODUCTS. *British Journal of Global Ecology and Sustainable Development*, 16, 5-9.
45. Zikriyoxujaeva, M. (2023). NOANANAVIY ENERGIYA MANBAALARIDAN FOYDALANISH MASALALARI. *PROBLEMS OF ARCHITECTURE AND CONSTRUCTION (SCIENTIFIC TECHNICAL JOURNAL)*, 1(2), 269-271.
46. Sultonboyevich, A. A., & Muhammadalixon o'g'li, H. S. (2023). STUDY OF THE PROPERTIES OF HEATED CONCRETE BASED ON INDUSTRIAL WASTE. *Новости образования: исследование в XXI веке*, 1(6), 978-985.
47. Абдурахмонов, А. С., & Омонкелдиева, Ш. (2022). Пути снижения обезвоживания бетонной смеси и трещинообразования в железобетонных изделиях при их изготовлении. *Строительство и образование*, (2), 28-31.
48. Razzakov, S., & Abdurakhmonov, A. (2020). G 'ISHT PISHIRISH XUMDONLARI UCHUN ISSIQBARDOSH TEMIR BETON YOPMA PLITA. *SCIENCE AND INNOVATIVE DEVELOPMENT*, 3(3), 113-119.
49. Sattikxo'jaevich, B.Z., Mutalibovich, RS, Chorieva, V., & Abdughalilova, M. (2023). SHAHARLARNING EKOLOGIK MUAMMOLARINING SABABLARI VA YECHIM YOLLARI. *JURNAL OF ENGINEERING, MEXANICA VA ZAMONAVIY ARXITEKTURA* , (2), 175-178.