

Volume 02, Issue 05, 2024 ISSN (E): 2994-9521

Seismic Insulation Works of Buildings and Structures Using Fluoroplastic

Turgunov Mukhriddin Sotvoldi oʻgli 1, Kurbanov Akram Xakimjanovich 1

- ¹ Teacher, Namangan Engineering Construction Institute, The Republic of Uzbekistan
- ² Megastar, Namangan Engineering Construction Institute, The Republic of Uzbekistan

Abstract:

Ensuring the seismic resistance of buildings and structures is a factor that must be taken into account, especially when constructing in seismically active areas. Nowadays, one of the main approaches to increasing seismic resistance is the use of various seismic insulation systems. It is not always profitable and rational to increase the seismic resistance of building structures or foundations for equipment by simply increasing strength.

Keywords: elastomeric supports; spring supports; seismic isolation; seismically isolated buildings and structures; seismic resistance.

Uzbekistan is located in a seismically active zone. According to official data, on the territory of the republic 359 cities and towns are located in seismically active zones. In these places, earthquakes can be from 7 to 9 points or even higher.

Since the 70-80s of the last century, seismic protection systems - seismic isolation systems (SIS) - have increasingly been used in construction. Seismic insulation systems based on rubber-metal supports (RMS) and elements with increased plastic deformation have become widespread throughout the world.

There are a number of foreign companies that develop and manufacture RMO systems of a diverse range and high quality. The leaders are FIP Industrial, Maurer Sohne, Robinson Seismic, Earthquake Protection Systems, Dynamic Isolation Systems, Scougal Rubber and others. Most of them offer combinations of rubber-metal bearings (RMM) with various types of metal damping elements.

There is a constant search for the most effective damping elements that work in parallel with elastic ones. The principle of their operation is based on plastic deformation of special metal elements.

It is proposed to implement the seismic isolation mechanism as follows.

The lower reinforced concrete slab of the building is concreted on this layer, and the building itself is erected on it.

To ensure that a structure displaced as a result of a seismic shock returns to its initial position of stable equilibrium, the supporting elements should be made in the form of convex and concave pyramidal planes to generate a gravitational restoring force (Fig. 1).

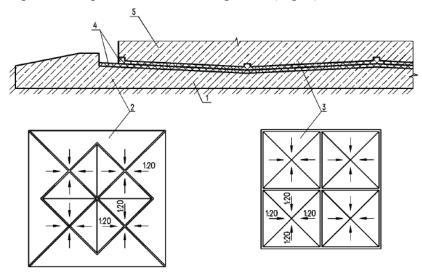
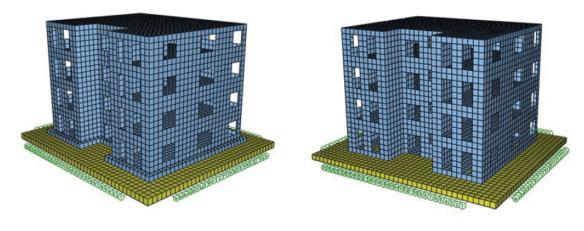



Figure 1. Diagram of the seismic isolation mechanism of the building: 1 - foundation; 2 schematic illustration of foundation slopes; 3 - schematic representation of the slopes of the bottom slab of the building; 4 - fluoroplastic plates; 5 - building.

Based on the selected design diagram of the seismic isolation mechanism, two FEMs of the building were created: one including the seismic isolation mechanism, and a similar one without it, in PC SCAD.

Seismic isolated building

Non-seismically isolated building

Figure 2. Calculation models

Comparison of the calculation results of a seismically isolated building and a building without SSI confirms the effectiveness of the seismic isolation of the building, because When installing SSI under the foundation of a building, normal stresses in vertical structural elements are reduced by an average of 80%.

To assess the damage to the structure after the destruction of the most loaded pier, a calculation was

made for the progressive collapse of the structure without seismic insulation; the result of the calculation is the strength separation isofields.

The area of destroyed horizontal structures is 603.5 m2, which is 95% of the area of all horizontal structures of the building.

The area of destroyed vertical structures is 51.5 m2, which is 20% of the area of all horizontal structures of the building.

References:

- 1. Bayboboeva Firuza Nabijonovna, & Khamidova Kamilla Ulugbekovna. (2022). SUPPORTING INNOVATIVE ENTREPRENEURSHIP AND SMALL BUSINESS. *Web of Scientist: International Scientific Research Journal*, *3*(4), 255–262. https://doi.org/10.17605/OSF.IO/CE8QP
- 2. Байбобоева, Ф. (2023). KORXONANING IQTISODIY XAVFSIZLIGINI TA'MINLASHNING YO 'NALISHLARI VA FUNKTSIONAL ELEMENTLARI. Economics and Innovative Technologies, 11(3), 262-268.
- 3. Sattikhodjaevich, B. Z., Sultonboyevich, A. A., & Tutiyo, E. (2023). TECHNOLOGY OF MANUFACTURE OF PRECAST REINFORCED CONCRETE STRUCTURES IN A DRY-HOT CLIMATE. *Scientific Impulse*, *I*(10), 1460-1466.
- 4. Sultonboyevich, A. A. (2024). Temperature and Moisture-Deformations of High-Temperature-Resistant Concrete Under Single Impact of Water and Temperature. *European Journal of Contemporary Business Law & Technology: Cyber Law, Blockchain, and Legal Innovations*, 1(2), 5-8.
- 5. Razzakov, S., & Abdurakhmonov, A. (2020). HEAT-RESISTANT REINFORCED CONCRETE SLAB IN KILNS. SCIENCE AND INNOVATIVE DEVELOPMENT, 3 (3), 113–119.
- 6. Sultonboevich, A. A., & Abdurauf o'g'li, A. I. (2023). WAYS TO REDUCE HYDRATION AND CRACKING OF CONCRETE IN THE PRODUCTION OF SPECIAL REINFORCED CONCRETE PRODUCTS. British Journal of Global Ecology and Sustainable Development, 16, 5-9.
- 7. Abdurahmonov, A., Madamiovna, K. D., & Egamberdiyeva, T. (2023). High Temperature Resistant Reinforced Concrete Made on the Basis of Industrial Waste. *Best Journal of Innovation in Science, Research and Development*, 2(3), 26-33.
- 8. Abdurahmonov, A., Madamiovna, K. D., & Egamberdiyeva, T. (2023). Technology of Manufacturing Technology of Pre-Tensioned Intermediate Plate by Continuous Molding Method. *Best Journal of Innovation in Science, Research and Development*, 2(3), 34-40.
- 9. Байбобоева, Ф. (2023). KORXONANING IQTISODIY XAVFSIZLIGINI TA'MINLASHNING YO 'NALISHLARI VA FUNKTSIONAL ELEMENTLARI. Economics and Innovative Technologies, 11(3), 262-268.
- 10. Байбобоева, Ф. (2023). ТАДБИРКОРЛИК СУБЪЕКТЛАРИ ИҚТИСОДИЙ ХАВФСИЗЛИГИНИ ТАЪМИНЛАШДА МОЛИЯВИЙ ХАВФСИЗЛИК МАСАЛАЛАРИ. Economics and Innovative Technologies, 11(2), 107-112.
- 11. Nabijonovna, B. F. (2020). Support for small business and private entrepreneurship in Uzbekistan. *ECLSS Online* 2020b, 524.
- 12. Nabijonovna, B. F. SECURITY OF ECONOMIC ACTIVITY IN ENTERPRISES. *Process Management and Scientific Developments*, 8.

- 13. Erdős, F., Németh, R., & Bayboboeva, F. (2023). Virtual Teamwork in Gamified 3D Environment. *INFOCOMMUNICATIONS JOURNAL: A PUBLICATION OF THE SCIENTIFIC ASSOCIATION FOR INFOCOMMUNICATIONS (HTE)*, (SP), 15-20.
- 14. Buzrukov Zakiryo Sattikhodjaevich, Abdurahmonov Adkhamjon Sultonboyevich, & Egamberdiyeva Tutiyo. (2023). QURUQ-ISSIQ IQLIMDA BO'LMA TEMIR-BETON konstruksiyalarni ISHLAB CHIQARISH TEXNOLOGIYASI. *Ilmiy impuls*, 1 (10), 1460–1466.
- 15. Бузруков, З. С., & Кохоров, А. А. У. (2022). Определение прочности кирпичной кладки на срез при сейсмическом воздействии. Строительство и образование, (2), 14-18.
- 16. Sattikxoʻjaevich, B.Z., Mutalibovich, RS, Chorieva, V., & Abduhalilova, M. (2023). SHAHARLARNING EKOLOGIK MUAMMOLARINING SABABLARI VA YECHIM YOLLARI. JURNAL OF ENGINEERING, MEXANICA VA ZAMONAVIY ARXITEKTURA, (2), 175-178.
- 17. Бузруков, З. С. (2023). ОСОБЕННОСТИ СТРОИТЕЛЬСТВА И ЭКСПЛУАТАЦИИ СЕЙСМОСТОЙКИХ ЗДАНИЙ. *GOLDEN BRAIN*, *I*(35), 195-200.
- 18. Бузруков, З. С., & Кохоров, А. А. У. (2022). Определение прочности кирпичной кладки на срез при сейсмическом воздействии. Строительство и образование, (2), 14-18.
- 19. Zokiryo, B., & Abdurahmonov, A. (2023). G'isht jangidan issiqlikka chidamli plitalarning ba'zi strukturaviy jihatlari. *E3S Web of Conferences* da (401-jild, 04065-bet). EDP fanlari.
- 20. Бузруков, З. С., & Кохоров, А. А. У. (2022). Определение прочности кирпичной кладки на срез при сейсмическом воздействии. Строительство и образование, (2), 14-18.
- 21. Turg'unov Muxriddin Sotvoldi o'g (2024). Technologies for Professional Training Development of Future Builders-Engineers on the Basis of Innovation Approach. European Journal of Contemporary Business Law & Technology: Cyber Law, Blockchain, and Legal Innovations 2, 24-28
- 22. Abdumonon Kokhorov, Mukhriddin Turgunov (2023). THE ROLE OF MEDIA AND INFORMATIONAL EDUCATION IN THE TRAINING OF CIVIL ENGINEERS. Golden brain 35, 177-182
- 23. Turgunov Mukhriddin, Abdumonon Kokhorov (2023) MECHANISMS AND ADVANTAGE OF TEACHING STUDENTS TO CREATIVE THINKING THROUGH MEDIA EDUCATION METHODS IN THE INFORMATIONAL EDUCATIONAL ENVIRONMENT. Golden brain 35, 183-188
- 24. Turgunov Mukhriddin, Abdumonon Kokhorov (2023) FORMATION OF PROFESSIONAL COMPETENCES OF ENGINEER BUILDERS ON THE BASE OF INNOVATIVE TECHNOLOGIES. Golden brain 35, 171-176
- 25. Turgunov Mukhriddin, Abdumonon Kokhorov (2023) USE OF MEDIA EDUCATION IN DEVELOPING THE PROFESSIONAL TRAINING OF FUTURE CIVIL ENGINEERS IN THE INFORMATIONAL EDUCATIONAL ENVIRONMENT. Golden brain 35, 189-194
- 26. М. Тургунов Н.Р. Ходжиев (2021) ЭКОНОМИЧЕСКИЙ АНАЛИЗ ПО ГИДРОИЗОЛЯЦИИ ФУНДАМЕНТА ОБЩЕСТВЕННЫХ ЗДАНИИ НАМАНГАНСКОЙ ОБЛАСТИ КАЧЕСТВО. ТЕХНОЛОГИИ. Инновации IV Международная научно-практическая конференция 2, 102-110
- 27. Madamiovna, K. D. (2023). AHSIKENT CASTLE AND THE CHARACTERISTIC FEATURES OF THE BATHS IN IT. Новости образования: исследование в XXI веке, 1(6), 939-949.

- 28. Abdurahmonov, A., Madamiovna, K. D., & Egamberdiyeva, T. (2023). High Temperature Resistant Reinforced Concrete Made on the Basis of Industrial Waste. *Best Journal of Innovation in Science, Research and Development*, 2(3), 26-33.
- 29. Abdurahmonov, A., Madamiovna, K. D., & Egamberdiyeva, T. (2023). Technology of Manufacturing Technology of Pre-Tensioned Intermediate Plate by Continuous Molding Method. *Best Journal of Innovation in Science, Research and Development*, 2(3), 34-40.
- 30. Madaminovna, K. D. (2022). CHARACTERISTICS OF FORMATION AND DEVELOPMENT OF THE ART OF BATHROOMING. *INTERNATIONAL JOURNAL OF RESEARCH IN COMMERCE, IT, ENGINEERING AND SOCIAL SCIENCES ISSN: 2349-7793 Impact Factor: 6.876, 16*(3), 24-28.
- 31. Madamiovna, K. D. (2023). Architecture of Traditional Baths in Central Asia. *Best Journal of Innovation in Science, Research and Development*, 2(3), 41-47.
- 32. Abdumutalibovich, K. A. (2023). PROFESSIONAL COMPETENCES OF MODERN BUILDERS. *Scientific Impulse*, *1*(10), 1435-1442.
- 33. Abdumutalibovich, K. A., & Lutfillaevna, B. M. (2024). The Role of Bim Technologies in the Information System of Education. European Journal of Contemporary Business Law & Technology: Cyber Law, Blockchain, and Legal Innovations, 1(2), 9-13.
- 34. Бузруков, З. С., & Кохоров, А. А. У. (2022). Использование солнечной энергии в системах теплоснабжения. Строительство и образование, (1), 113-121.
- 35. Бузруков, З. С., & Кохоров, А. А. У. (2022). Определение прочности кирпичной кладки на срез при сейсмическом воздействии. Строительство и образование, (2), 14-18.
- 36. Abdumutalibovich, K. A., Abdushokirovna, M. Z., & Kh, A. (2023). IMPROVING VIRTUAL LESSON TEACHING METHODOLOGY BASED ON MODERN DIGITAL TECHNOLOGIES. *JOURNAL OF ENGINEERING, MECHANICS AND MODERN ARCHITECTURE*, (2), 187-190.
- 37. Akiner, M. E. (2016). Smart cities transformation in Turkey. New arch-international journal of contemporary architecture, 3(3), 8-16.
- 38. Рахимова, Г., Илхом, Қ., & Дедаханов, Б. (2023). ТАЪЛИМ ЖАРАЁНИДА ИННОВАЦИОН ТЕХНОЛОГИЯЛАРНИНГ ЎРНИ. Journal of new century innovations, 21(3), 33-40.
- 39. Xatamovich, Q. D. (2023). MAMLAKATIMIZDA ARXITEKTURA-SHAHARSOZLIK SOHA MUTAXASSISLARI TAYYORLASHNI TAKOMILLASHTIRISH CHORALARI. *JOURNAL OF ENGINEERING, MECHANICS AND MODERN ARCHITECTURE*, (2), 179-181.
- 40. Egamberdiyeva, T. (2023). DESIGNING ENERGY EFFICIENT AND PASSIVE HOUSES. *GOLDEN BRAIN*, *1*(35), 153-158.
- 41. Egamberdiyeva, T. (2023). ARCHITECTURAL AND CONSTRUCTION REQUIREMENTS IN THE DESIGN OF LOW-RISE RESIDENTIAL BUILDINGS. *GOLDEN BRAIN*, 1(35), 201-205.
- 42. Xatamovich, Q. D. (2023). MAMLAKATIMIZDA ARXITEKTURA-SHAHARSOZLIK SOHA MUTAXASSISLARI TAYYORLASHNI TAKOMILLASHTIRISH CHORALARI. *JOURNAL OF ENGINEERING, MECHANICS AND MODERN ARCHITECTURE*, (2), 179-181.
- 43. Abdurahmonov, A. (2023). THE EXPERIENCE OF THE WORLD AND THE WORLD'S

- EXPERIENCES ON THE CONSTRUCTION OF MULTI-STOREY PARKING. GOLDEN BRAIN, 1(35), 165-170.
- 44. Sultonboevich, A. A., & Abdurauf o'g'li, A. I. (2023). WAYS TO REDUCE HYDRATION AND CRACKING OF CONCRETE IN THE PRODUCTION OF SPECIAL REINFORCED CONCRETE PRODUCTS. British Journal of Global Ecology and Sustainable Development, 16, 5-9.
- 45. Zikriyoxujaeva, M. (2023). NOANANAVIY ENERGIYA MANBAALARIDAN FOYDALANISH MASALALARI. *PROBLEMS OF ARCHITECTURE AND CONSTRUCTION (SCIENTIFIC TECHNICAL JOURNAL)*, 1(2), 269-271.
- 46. Sultonboyevich, A. A., & Muhammadalixon o'g'li, H. S. (2023). STUDY OF THE PROPERTIES OF HEATED CONCRETE BASED ON INDUSTRIAL WASTE. Новости образования: исследование в XXI веке, 1(6), 978-985.
- 47. Абдурахмонов, А. С., & Омонкелдиева, Ш. (2022). Пути снижения обезвоживания бетонной смеси и трещинообразования в железобетонных изделиях при их изготовлении. *Строительство и образование*, (2), 28-31.
- 48. Razzakov, S., & Abdurakhmonov, A. (2020). G 'ISHT PISHIRISH XUMDONLARI UCHUN ISSIQBARDOSH TEMIR BETON YOPMA PLITA. *SCIENCE AND INNOVATIVE DEVELOPMENT*, *3*(3), 113-119.
- 49. Sattikxoʻjaevich, B.Z., Mutalibovich, RS, Chorieva, V., & Abduhalilova, M. (2023). SHAHARLARNING EKOLOGIK MUAMMOLARINING SABABLARI VA YECHIM YOLLARI. *JURNAL OF ENGINEERING, MEXANICA VA ZAMONAVIY ARXITEKTURA*, (2), 175-178.