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Abstract:  

 

Using a one-dimensional tight-binding model, we show the key characteristics of electron 

propagation in molecular modelling, including band structure, integrated density of state N(E), and 

density of state (DOS). These characteristics have been computed and the electron propagation on 

the one-dimensional crystal chain has been studied using the FORTRAN programme. We computed 

the DOS, the number of eigenvalues smaller than E for both small and high numbers of atoms, and 

the general band structure. We discovered that the band structure attribute for a single atom in the 

unit cell was on line. When there are few atoms in the system, the N(E) computation shows a stair-

line; when there are many atoms, the line is smooth. These demonstrate how the atoms' intensity 

within a material has a significant influence in enhancing DOS. The density of state approaches 

infinity near the band structure's boundaries, and the DOS manifests as a VAN-HOV singularity. 

 

Introduction 

Studies pertaining to the electronic structure of materials and the necessity of electronic device 

miniaturisation have received a great deal more attention in recent years. [1] The subject of 

nanoscience, which seeks to create usable objects at the atomic size and establish control, has 

emerged as a result of years of atom-focused research. [1-3] Applications for altering these systems' 

electrical characteristics include the creation of molecular switches and the quantum interference 

effect transistor (QuLET). [1-2] as well as [4] In order to examine the most crucial aspects of 

electron propagation, including energy bands and density of states, we present a few molecular 

system models in this chapter. 
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Electrical properties of molecular structure  

Using a numerical decimation, we explore the density of state for the ordered system and the band 

structure for periodic structures using the tight binding concept. Examining a crystal's band 

structure can help you gain an understanding of its electrical characteristics. Here, Figure 1.1 

depicts a very basic one-dimensional crystalline system, while Figure 1.2 shows the band structure. 

One of the electrical characteristics of these band structures that we attempt to comprehend in order 

to understand the transport mechanism in the materials is density of states. [5]  

1.1. The Tight Binding Model  

Tight binding has existed for many years as a convenient and transparent model for the description 

of electronic structure in molecules and solids [1].  

 

Figure 1.1 shows simply the tight-bind model and how the wave functions of atoms will 

interact as we consider the nearest neighbour atoms. 

Figure 1.1 A model to describe the electronic structure in molecules and solids.The tight-binding 

model, we imagine how the wave functions of atoms will interact as we bring them together.  

We employ the tight binding model (TBM), also known as the tight binding approximation, in our 

work. According to TBM, we just need to take into account the electrons that are closest to us 

because they are sufficiently securely bonded together in a solid. When the wave functions at each 

particular atomic site decay to zero before they reach the second nearest neighbour, this will be true 

in many physical issues. We also know that in our one-dimensional model, there are no other 

directions in which interaction may occur and that the nearest neighbours will prevent the wave 

function from spreading. Figure 1.2 depicts the tight binding Hamiltonian for a chain, which solely 

includes the interaction with the nearest neighbour. Tight binding theory has been used to explain 

the behaviour of insulators and semiconductors; this model is inadequate for metals, as the electrons 

have high mobility, hence these assumptions are false. [6] 

1.2. One dimensional (1-D) linear crystalline chain  

We consider simple tight-binding approach to get qualitative understanding of electronic structure 

calculation in periodic systems, as shown in figure 1.  

 

Figure 1: one dimension (1-D) linear crystalline chain [7] 
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In this system, 𝑜 and 𝛾 are the site and hopping energies respectively. According to the time 

independent Schrodinger equation: The most general formula for infinite chain has given by:  

𝑜𝜓𝑗 − 𝛾𝜓𝑗−1 − 𝛾𝜓𝑗+1 = 𝐸𝜓𝑗 (1.1)  

The equation (1.2) is satisfied for all j go to ±∞, and we can write (1.3) as :  

𝜓𝑗+1 = (𝜀 𝑜𝛾
−𝐸) 𝜓𝑗 − 𝜓𝑗−1 (1.2)  

This is called Recurrent Relation.Block’s theorem has used to calculate the dispersion relation for 

this system by substituting 𝜓𝑗 = 𝐴𝑒𝑖𝑘𝑗 into (1.2) eq. we get:  

𝐸(𝑘) = 𝑜 − 2𝛾𝑐𝑜𝑠𝑘 (1.3)  

The spectrum of an infinite system is continuous. Where E as a function of k, and the bandwidth is 

directly proportional to the hopping integral, where 𝐵𝑊 = 4𝛾, as shown in Figure 2 

 

Figure 2: illustrates a simple band structure for (1-D) linear chain. 

 

Figure 3. Energy gap and general band structure at free electron. 

(Right) the energy gap at free electron over a range of k points. We predict that the density of state 

lies within this range and outside it will be zero.  

1.3. Density of state (DOS)  

Density of state (DOS) is one of the physical quantities that is of great interest in Condensed Matter 

Physics [2, 5], that is described by analytical and numerical methods.  

Using differential equations (1.4) with (k) and (n) respectively, we calculate the analytical Formula 

for DOS:  
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 𝑑𝑛 𝑑𝑛 𝑑𝑘 

 𝐷(𝐸) = =  .   

 𝑑𝐸 𝑑𝑘 𝑑𝐸 

 𝑑𝑛 (𝑁 + 1) 1 

 𝐷(𝐸) = =    (1.5)  

 𝑑𝐸 𝜋 √4𝛾2 − ( 𝑜 − 𝐸)2 

Where dn is the number of eigen values in an interval of k , D(E) is the density of state which is 

defined that the number of eigen values per unit energy, this is only correct if the energy lies within 

the energy band :  

𝑜 − 2𝛾 < 𝐸 < 𝑜 + 2𝛾  

But when the energy lies outside these ranges then the energy band will be zero and then the DOS 

will be zero as well.  

 

Figure 4. demonstrates the Van Hove singularity density of state (VH-DOS). 

  The density of state per atom is given by:  

 ^ = (𝑁 + 1) 1  1  (1.7)  

 𝐷(𝐸)  

 𝑁 𝜋 √4𝛾2 − ( 𝑜 − 𝐸)2 

A Histogram and decimation are introduced as numerical methods to calculate the DOS 

numerically.  

To create a Histogram of the eigen values as shown in Figure 4. it is important to know that these 

eigen values should put into box and the width of box is called ∆𝐸 , where ∆𝐸 = 𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛 , then  

𝑁 

the DOS can be computed by:  

𝐷(𝐸) = 𝑁 (𝐸) (1.8)  

               ∆𝐸 
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where 𝑁(𝐸) is the number of eigen values or sometime called integrated density of state, and by 

making ∆𝐸 small enough then we get a series delta function (𝛿) which is called the level spacing 

between 𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥 in this case the DOS can be described by:  

𝑁 

𝐷(𝐸) = ∑ 𝛿(𝐸 − 𝐸𝑛) (1.9)  

                𝑛=1 

and the level spacing is  

          𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛 

𝛿 =  (1.10)  

                 𝑁 

 

Figure 5. illustrates a histogram for DOS as a function of energy. 

1.4. Decimation Method  

A numerical decimation method is a powerful technique for the understanding of the electronic 

properties such as density of state and transport [3].  

We deal with a large Hamiltonian to calculating the electronic properties like density of state DOS 

and transport TR.  

𝐻 

 ∼ 𝑖𝑁𝐻𝑁𝑗 

𝐻𝑖𝑗 = 𝐻𝑖𝑗 + 𝐸  − 𝐻𝑁𝑁 (1.11)  

This is the general formula to decimate the finite system for N atoms, when 𝐻𝑖𝑗∼ is a new 

Hamiltonian. It is important to know that the properties of lattice is preserved when we make a 

mathematical transformation[8].  

Results and discussion  

In this work, FORTRAN 95 programmes have been built to compute a variety of electrical 

properties for our one-dimensional crystal chain molecular model. The band structure, density of 
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states (DOS), and integrated density of state (N(E) are the computed properties. These computations 

illustrate how to solve the Schrodinger equation in a small-unit cell to compute the band structure 

with periodic boundary condition, as well as how to construct the Hamiltonian for large or simple 

systems in nature and determine the eigenvalues and eigenvectors. In this study, we will 

demonstrate how the tight-binding approximation provides a qualitative comprehension of periodic 

structure electronic structure computations.[10–9] The following points provide a summary of the 

findings:  

 

Figure 6. shows the calculation of band structure for single atom in unit cell for one-

dimensional periodic chain over a range of k-points. 

By evaluating the equation 1.4 in the FORTARN program, we calculated the band structure for 

single atom in the unit cell for one-dimensional periodic chain over a range of k-points. The 

calculation shows that the band structure (blue curve) lies between 𝑘 = cos−1 𝐸 −𝜀0 = 0 and 𝑘 = 

cos−1 𝐸 −𝜀0 = 100, as  

 2𝛾 2𝛾 

shown in Figure 6.  

 

Figure 7. shows (Left) general band structure and (Right) energy gap at free electron, where a 

represents the lattice vector. 

2.1. Calculation of integrated density of state N(E)  

Using FORTRAN code, we calculated the number of eigenvalues less than E for small and large 

number of atoms. Figure 3.2 shows the plot of step function at small number of atoms (N=5), 
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whereas Figure 4.2 shows plots at N=10. The calculations exhibit that there is stairs line when the 

system contains small number of atoms. Figure 5.2 shows the smooth plot at large number of atoms.  

 

Figure 8. The calculation of integrated density of state N(E) versus E , by using the 

Decimation method (Fortran), N=5. 

Figure 9. the calculation of integrated density of state N(E) versus E , by using the Decimation 

method (Fortran), N=10. 

 

Figure 10. The calculation of integrated density of state N(E) versus E , by using the 

Decimation method (Fortran), N=500. 

Using FRTRAN program, we calculated the density (DOS) of states over a range of energies. The 

calculation shows (blue curve) Van Hove singularity of DOS appeared when the edges of band 

structure 𝐸𝑚𝑎𝑥 = 𝑜 + 2𝛾 = +2 and 𝐸𝑚𝑖𝑛 = 𝑜 − 2𝛾 = −2, as shown in Figure 6.2.  
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Figure 11. Analytical density of state (DOS), the plot shows Van Hove singularity of DOS 

appeared when the edges of band structure 𝐸𝑚𝑎𝑥 = 𝑜 + 2𝛾 = +2 and 𝐸𝑚𝑖𝑛 = 𝑜 − 2𝛾 = −2. 

Conclusion 

We studied the crucial characteristics of electron propagation in a chain of one-dimensional 

crystals. The integrated density of state N(E), density of state, and basic band structure were all 

computed using the FORTRAN programme, which was also utilised to look at the electron 

propagation in this model. We discovered that each atom in the unit cell has a single line 

representing its band structure property. When there are few atoms in the system, the N(E) 

computation shows a stair-line; when there are many atoms, the line is smooth. These demonstrate 

how the atoms' intensity within a material has a significant influence in enhancing DOS. The 

density of state approaches infinity near the band structure's boundaries, and the DOS manifests as a 

VAN-HOV singularity.  
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