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Abstract:  

 

The ubiquitous nature of Android devices has regrettably rendered them prime targets for 

cyberattacks, particularly those orchestrated by botnets. Conventional solutions for Android botnet 

detection often rely on static or dynamic analysis techniques individually, leading to limitations in 

accuracy and adaptability. Existing research on Android malware detection utilizes various 

approaches, each with limitations. Some researchers focus on static analysis, examining code for 

signs of malicious activity. Others employ dynamic analysis, monitoring app behavior during 

runtime to detect suspicious system calls. Additionally, signature-based approaches compare apps to 

known malware signatures. However, research on anomaly-based detection, which identifies 

unusual app behavior without relying on pre-defined patterns, remains limited, leaving room for 

improvement. This paper proposes AKANDO, a novel botnet detection model that leverages a 

hybrid feature extraction approach and a multi-layered neural network architecture to achieve 

superior performance. By combining static and dynamic analysis, AKANDO gains a more holistic 

understanding of app behavior, potentially leading to superior detection accuracy compared to 

methods relying solely on one approach. The neural network architecture allows AKANDO to learn 

complex relationships between extracted features and botnet behavior, enabling it to adapt to 

evolving threats through continuous training with updated data. Moreover, AKANDO prioritizes 

minimizing false positives through its hybrid analysis and machine learning techniques, ensuring 

legitimate applications aren't flagged as malicious.  

Keywords: Android botnet detection, Hybrid analysis, Machine learning, Neural networks and 

False positives 

 

1. Introduction 

Anomaly detection is identifying data points in dataset that do not fit the normal pattern. It is a 

technique used to identify unusual pattern that do not conform to expected behaviour. Anomalies 
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can be caused by errors in data or sometimes are indicative of a new underlying process, or malware 

attack. For many years now there has been incidents and reports of Cyber security, and most of 

these incidents are carried out through Botnets. Mobile devices have the highest market share of 

86.93% as at December 2023 (Statcounter, 2023), which makes it an ideal target for attackers. 

These devices face an everyday growing number of security threats (Vuleta, 2023) because 

sensitive data such as contact lists, passwords, ATM card numbers and Bank Verification Number 

(BVN) are stored on these mobile devices and security issues are taken less seriously by the users of 

those devices.  

Recently Vuleta (2023) of Legaljobs Lab has identified 44 new mobile malware families to watch 

out for this year 2023 (SMS trojans, iPhone malware, Android spyware) with 23,894 modifications. 

According to Kaspersky Lab reports of December 2020, their detection systems discovered an 

average of 360,000 new malicious files every day over the past 12 months, which represents an 

upward increase of 5.2% from 346,000 in 2018. Mobile bot runs automatically once it is installs on 

a device and gains complete access to the device and its contents, and starts communicating with 

and receiving instructions from one or more command and control servers controlled by a 

cybercriminal called a botmaster.  

Barriga and Yoo (2017) opined that malware authors use many techniques to evade the detection 

such as (a) code obfuscation technique, (b) encryption, (c) including permissions which are not 

needed by the application, (d) requesting for unwanted hardware, (e) download or update attack in 

which a benign application updates itself or another application now with malicious payload, which 

is very tough to detect. Despite advancements in mobile security, there's a gap in research on 

anomaly-based detection systems for Android. This study focuses on detecting Android bots, 

aiming to reduce errors and improve accuracy. An open-source malware database from Kaggle.com, 

known for its high detection power, will be used for training. This research highlights the need for 

exploring new detection techniques. 

There are three main categories for malware detection based on analysis methods: Static, Dynamic, 

and Hybrid. Static analysis examines an app without running it, looking at features like permissions 

and API calls within the manifest file. Dynamic analysis focuses on features extracted while the app 

runs, such as network traffic and battery usage. Hybrid analysis combines both approaches, which is 

where machine learning comes in, and forms the core of this research. 

Mobile bots are malware that run automatically after installation. The key challenge lies in accurate 

detection. Attackers constantly develop ways to bypass traditional methods, making it difficult to 

keep up with new malware variations. Researchers aim to create a highly accurate system for 

catching bots while minimizing false positives (mistakenly identifying safe apps as threats) and 

false negatives (missing actual malware). This research strives for near-perfect detection, balancing 

threat identification with minimal errors. 

2. Related Works 

There have been significant research efforts to solve the problem of Android malware. Dini et al., 

(2012), describe, a Multi-Level Anomaly Detector for Android Malware (MADAM). The first 

prototype of MADAM was able to detect several real malwares found in the wild. The device 

usability was not affected by MADAM due to the low number of false positives generated after the 

learning phase. MADAM uses a global-monitoring approach that was able to detect malware 

contained in unknown applications, i.e. not previously classified. MADAM uses a smaller number 

of features, and has been tested on real malware found in the wild, and shows better performance in 

terms of detection and, especially, of false positives rate. After the learning phase, the false positive 

rate of MADAM was 7%, and the detection rate of MADAM is 93%. But the authors used WEKA 

tool that can only work on small dataset, and we are in the era of big data, in WEKA whenever a set 
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is bigger than a few megabytes an error occurs, and this can lead to malware evading thereby 

increasing the possibilities of High false positive rate. 

Yerima et al., (2013) presented the static malicious detection approach based on the features - API 

Android Permissions, and Commands. They have used their own tool with a component API 

detector, Command Detector, and Android Permission Detector. They had analysed 2000 Android 

applications consisting of 1000 malicious applications from 49 Android Malwares families. They 

had selected 15 to 20 features from API, Android Permission, and command categories for the 

malicious application classification and had the AUC of 97.1% with the Bayesian model. This 

model could not classify malware family, that it did not recognize so the possibility of malware 

evasion is certain, thereby leading to high False positive rate. In 2021, there was an update in their 

work, when Yerima (2021), used Deep learning method to obtain 97.6% accuracy rate. Which 

shows an Improvement. 

Kim et al., (2013) proposed Hybrid Intrusion Detection tool which used decision tree for 

classification of malicious and benign applications. They have designed an automatic feature 

extraction tool written with Java scripts which can extract two features, Permission and Method 

API. To evaluate their framework, they collected 893 normal applications from Android market and 

110 malicious applications from the Internet site and had the detection rate of 82.7%. This tool also 

is unstable, if there is any small change in data there will be a large change in structure and this 

could lead to wrong classifying of malware therefore there is possibility of high false positive rate. 

Canfora et al.,(2015) proposed an Android malware detection method that is different from other 

methods, their methods is based on selecting the longest sequences of system calls for the malware 

detection rather than considering the individual system call invocation by the Android application. 

They had used the SVM machine learning algorithms for malware detection and achieved the 

detection rate of 97%. The system call log of Android application execution on the real device had 

been used for features extraction. They had evaluated this method with 1000 benign and 1000 

malicious applications from 28 malware families. The algorithm used here is SVM which does not 

perform well with large data set and one of the issues of SVM is that it under preforms in datasets 

with noise, therefore there is likelihood of high false positive rate. 

Kurniawan et al., (2015) used Logger, a default application which is inbuilt in Android was used to 

extract the sum of Internet traffic, percentage of battery used and battery temperature for every 

minute. This information collected as set of features and is fed into WEKA, an open source learning 

library for testing and training with Naive Bayes, J48 decision tree and Random Forest algorithms. 

The author concluded that Random Forest has high accuracy of 85.6% with these features and 

proposes other features that can be combined with existing system to improve the accuracy. The 

author only mentioned that the False Positive and false negative rates were high, their focus was on 

accuracy rate which they compared four different algorithms and decided that Random forest 

produced the highest accuracy rate of the four. 

Abah., et al., (2015) designed a model called HOSBAD, this is a machine learning approach for the 

detection of malware on Android platforms. The system monitors and extracted features from the 

applications while in execution and used them to perform in-device detection using a trained K-

Nearest Neighbour classifier. Their results showed performance in the detection rate of the classifier 

with accuracy rate of 93.75%, error rate of over 6% and a claim of low false positive rate which was 

not specified. KNN could only work on small data set and cannot guarantee realistic assessment. As 

there is possibility of some malware to evade detection, The error rate of 6% is high. 

Rashidi, et al., (2018) worked on a framework for the detection of Android malicious application 

that was based on Support Vector Machine (SVM) and Active Learning technologies. In order to 

build an active learning model, the authors made use of expected error reduction query strategy so 

https://sciprofiles.com/profile/1087684
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as to combine Android malware new informative instances and to retrain the model in order to be 

able to do adaptive online learning. To evaluate their model, the authors utilized the DREBIN 

benchmark malware dataset via a set of experiments and their findings revealed that their 

framework could detect new malware more accurately.  

Saracino, et al., (2018) improved on MADAM (Dini et al., 2012), using machine learning approach 

and KNN as the classifier. The accuracy of MADAM was improved from 93% to 96%. And the rate 

of false alarm was also reduced to 6.5%. And KNN does not also work well with large dataset. 

Hoang and Nguyen (2018), worked on botnet detection model based on machine learning using 

Domain Name Service query data and evaluates its effectiveness using four popular machine 

learning techniques (K –Nearest Neighbour, Random Forest, Decision Tree and Naives Bayes). 

Their results show that machine learning algorithms can be used effectively in botnet detection. The 

model achieved the average classification accuracy over 85%, and False Positive rate of 17.10%. 

They suggested that in the future, larger datasets can be used to analyse the effects of the domain 

name features on the detection accuracy, as well as new features to improve the detection accuracy 

of the proposed model.  

Closely related to this study, is the work of Hoang and Nguyen (2018). The reason for the choice is 

that their work was based on botnet detection and they used four Machine Learning Techniques (K 

–Nearest Neighbour, Random Forest, C45 Decision Tree and Naives Bayes). Their results showed 

performance in the detection rate of the classifier with accuracy rate of 82.9%, error rate of over 

17.1%. Bezerra, et al., (2019) proposed a host-based method for the detection of Botnets in Internet 

of Things (IoT) Devices using One-Class Classification (OCC) approach that was able to model 

only the legitimate behaviour of a device in order to detect any deviations. The proposed system is 

underpinned by a novel agent-manager architecture based on HTTPS, which is able to stop the IoT 

device from being overloaded by the training activities. The One-Class algorithms evaluated are 

Elliptic Envelope, Isolation Forest, Local Outlier Factor, and One-Class Support Vector Machine 

(SVM).  

Gyunka and Barda (2020), used the idea of Bezerra, et al., (2019), whose work was based on OC-

SVM, but instead of SVM they decided to use KNN classification approach and developed a 

normality model that is based on One-Class K-Nearest Neighbour (OC-kNN) Machine Learning 

approach for anomaly detection of Android Malware. The OC-kNN was trained, using WEKA 3.8.2 

Machine Learning Suite, through a semi-supervise procedure that contained mostly benign and a 

very few outliers Android application samples. The OC-kNN had 88.57% true performance 

accuracy for normal instances while 71.9% was recorded as true performance accuracy for outliers 

(unknown) instances. The false alarm rates for both normal and outlier’s instances were recorded as 

28.1% and 11.5%. The model recorded a high false positive rate because the KNN classifier works 

better on small dataset and it is sensitive to the scale of data and irrelevant features (Marina, 2020).  

According to Bohutska (2021), the percentage of false positive (FPR) should not be higher than 

27.8%, but can be lower and the existing system achieved a lower FPR. This proposed system will 

also use combination of four machine learning algorithms, (K –Nearest Neighbour (KNN, Random 

Forest (RF), Support Vector Machine (SVM) and Classification and Regression Tree (CART). It 

will substitute C45 decision tree and Naïve Bayes with SVM and CART, the main difference here is 

the CART whose strength is very important in revealing important data relationship. It 

automatically searches for pattern and uncover hidden structure in highly complex way. This 

property is very important to Malware detection and surprisingly it is not a favourite for researchers. 

The generated results will be compared to the existing.  
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3. Proposed Model AKANDO 

The architectural design for this study is as shown in Figure 1.  

 

Figure 1: The Proposed Model 

AKANDO adopts a two-pronged approach to feature extraction, leveraging both static and dynamic 

analysis. Static analysis examines the app's code to extract features such as permissions requested, 

network calls made, and API usage patterns. Dynamic analysis involves executing the app in a 

controlled environment to monitor its runtime behavior, including system call frequency, network 

traffic analysis, and resource consumption. This combined approach provides a more 

comprehensive view of an app's functionalities, enabling the detection of malicious behavior that 

might be hidden within static code or only emerge during execution (Wang et al., 2019). 

AKANDO employs a multi-layered neural network architecture to learn complex relationships 

between the extracted features and botnet behavior. The network architecture typically consists of 

an input layer that receives the extracted features, multiple hidden layers for learning intricate 

patterns, and an output layer that classifies the app as benign or malicious. The model is trained on a 

labelled dataset consisting of known botnets and benign apps. During the training process, the 

weights and biases within the neural network are adjusted to minimize the discrepancy between the 

predicted botnet probability and the actual label (Xu et al., 2018). 

The pre-processed features are then concatenated to form a combined feature vector at time t as 

shown in equation 1: 

X_t = [S', D'_t]        (1) 

This vector is then fed into a multi-layered neural network architecture. We can represent a single 

neuron in a layer l with the following activation function as shown in equation 2: 

a^(l)(i) = σ(Σ w^(l)(i,j) * x^(l-1)(j) + b^(l)(i))    (2) 

where: 

 a^(l)(i) represents the activation of the i-th neuron in layer l 

 σ denotes the activation function (e.g., sigmoid, ReLU) 

 w^(l)(i,j) represents the weight between the j-th neuron in layer l-1 and the i-th neuron in layer l 
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 x^(l-1)(j) represents the output of the j-th neuron in layer l-1 

 b^(l)(i) represents the bias term of the i-th neuron in layer l 

The weights and biases are learned during the training process by minimizing a loss function. A 

common choice for the loss function in binary classification problems like botnet detection is the 

binary cross-entropy as shown in equation 3: 

L(t) = - (P(A_t | Botnet) * log(y_t) + (1 - P(A_t | Botnet)) * log(1 - y_t))   (3) 

where: 

 L(t) represents the loss at time t 

 y_t represents the ground truth label (1 for botnet, 0 for benign) 

3.1 Core Functionalities of AKANDO 

The effectiveness of AKANDO's machine learning component relies on several mathematical 

concepts: 

Neurons within the hidden layers of the neural network employ activation functions to introduce 

non-linearity. This allows the network to learn complex relationships between the input features and 

the output (botnet classification). Common activation functions used in botnet detection include the 

sigmoid function and the rectified linear unit (ReLU) function (Goodfellow et al., 2016). 

During the training process, the model's performance is evaluated using a loss function. The binary 

cross-entropy loss function is typically used for binary classification problems like botnet detection. 

It measures the discrepancy between the predicted botnet probability (output of the neural network) 

and the actual label (0 for benign, 1 for botnet). The loss function is minimized through gradient 

descent optimization algorithms, which iteratively adjust the weights and biases within the network 

(James et al., 2013). 

Concepts relevant to the optimization and performance of the machine learning model. These 

include techniques like L1/L2 regularization or feature selection can be employed to identify 

features that significantly influence the model's decisions. This can help improve model 

interpretability and potentially lead to feature engineering for better performance (Guyon and 

Elisseeff, 2003). 

Furthermore, regularization methods like L1/L2 regularization penalize large weight values in the 

neural network. This helps prevent overfitting, a phenomenon where the model performs well on 

the training data. AKANDO also benefit from incorporating four other machine learning algorithms 

for a more comprehensive detection strategy: support vector machine (SVM), random forest (RF), 

k-nearest neighbor (KNN), and classification and regression tree (CART). 

(i) Support Vector Machine (SVM) 

A non-linear binary support vector machine (SVM) is used for malware detection on android 

devices. The SVM training dataset is formulated as shown in Equation 4 and 5: 

(𝑥1, 𝑦1) . . . . . . . (𝑥𝑛, 𝑦𝑛)    (4) 

 

Where: 𝑥 is the feature set, and 𝑦 is the class label 

𝑥𝑖 = 𝑥𝑖
1, 𝑥𝑖

2, . . . . . . 𝑥𝑖
𝑑     (5) 

where: 𝑥𝑖
𝑑 is a real value, and 𝑦𝑖 = {−1, 1} 
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Radial Basis Function Kernel (RBF) function is used to map the non-separable training data from 

input space to feature space in order to find an optimimal hyperplane that correctly segregates the 

data. The RBF kernel is presented in Equation 6 and 7: 

𝐾(𝑥𝑖⃗⃗  ⃗ , 𝑥𝑗⃗⃗  ⃗) =  ∅(𝑥𝑖⃗⃗  ⃗)
𝑇∅(𝑥𝑖⃗⃗  ⃗)          (6) 

𝐾(𝑥𝑖⃗⃗  ⃗ , 𝑥𝑗⃗⃗  ⃗) = exp (−𝛾 ||𝑥𝑖 − 𝑥𝑗||
2

)                              (7)  

Where: 𝛾:
1

2𝜎2 > 0, 𝑥𝑖 are the support vector points, 𝑥𝑗 are the feature vector points in the 

transformed space, 𝐾(𝑥𝑖⃗⃗  ⃗ , 𝑥𝑗⃗⃗  ⃗) is the kernel function. 

The kernel function calculates the dot product of the mapped data points in the transformed feature 

space. 

The optimal hyperplane that segregates between the two classes is found using Equation 8. 

𝑤𝑇 . 𝑥 + 𝑏 =  ∑ 𝛼𝑖 𝑦𝑖 ∅(𝑥𝑖⃗⃗  ⃗)
𝑇∅(𝑥𝑖⃗⃗  ⃗) + 𝑏𝑙

𝑖=1 = 0 (8) 

The classification frontiers are found by the following equation 9 and 10: 

𝑤 ∅(𝑥) + 𝑏 =  1                                       (9) 

𝑤 ∅(𝑥) + 𝑏 =  −1                                       (10) 

The optimal weight vector (w) is given by equation 11: 

𝑤⃗⃗ =  ∑ 𝛼𝑖  𝑦𝑖 ∅(𝑥𝑖⃗⃗  ⃗)
𝑙
𝑖=1                                         (11) 

The dual formulation of SVM algorithm is used in this work. This formulation which is presented as 

a maximization problem over 𝛼 is shown in Equation 12: 

max∑ 𝛼𝑖  −
1

2
∑ ∑ 𝛼𝑖

𝑙
𝑗=1 𝛼𝑗  𝑦𝑖 

𝑙
𝑖=1 𝑦𝑗 ∅(𝑥𝑖⃗⃗  ⃗)

𝑇∅(𝑥𝑖⃗⃗  ⃗) 
𝑙
𝑖=1                                           (12) 

Subject to: 0 <  𝛼 < 𝐶 and ∑ 𝛼𝑖
𝑙
𝑖=1  𝑦𝑖 = 0 

Where: 𝛼𝑖 is the weight vector, 𝑦 is the label vector, ∅(𝑥𝑖⃗⃗  ⃗)
𝑇∅(𝑥𝑖⃗⃗  ⃗) is the kernel function, and 𝐶 is the 

intercept. 

The decision function g used in making prediction is given in equation 13: 

𝑔(𝑥 ) = 𝑠𝑔𝑛(𝑤⃗⃗ 𝑇𝑥 + 𝑏) ⇒ 𝑠𝑔𝑛(∑ 𝛼𝑖 𝑦𝑖 ∅(𝑥𝑖⃗⃗  ⃗)
𝑇∅(𝑥𝑖⃗⃗  ⃗) + 𝑏𝑙

𝑖=1 )                           (13) 

Where: 𝑔(𝑥 ) is the predicted label, 𝑠𝑔𝑛 is the sign of (𝑤⃗⃗ 𝑇𝑥 + 𝑏), and 𝛼𝑖 is the weight vector. 

(ii) Random Forest (RF) 

Random forest is a good option for regression and best known for its performance in classification 

problems. Furthermore, it is a relatively easy model to build and does not require much 

hyperparameter tuning. This is because the main hyperparameters are the number of trees in the 

forest and the number of features to split at each leaf node. 

a. Random Forest Classification Algorithm 

STEP 1: Randomly select k features from total m features. 

Where k << m 

STEP 2: Among the “k” features, calculate the node “d” using the best split point. 

STEP 3: Split the node into daughter nodes using the best split. 

STEP 4: Repeat 1 to 3 steps until “l” number of nodes has been reached. 



 

130  |  INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY       www.multijournals.org 

 

STEP 5: Build forest by repeating steps 1 to 4 for “n” number of times to create “n” number of 

trees. 

b. Random Forest Regression Algorithm 

STEP 1: Take the test features and use the rules of each randomly created decision tree to predict 

the outcome and store the predicted outcome (target) 

STEP 2: Calculate the votes (majority voting) for each predicted target. 

STEP 3: Consider the high voted predicted target as the final prediction from the random forest 

algorithm. 

To perform the prediction using the trained random forest algorithm we need to pass the test 

features through the rules of each randomly created trees. 

(iii) K-Nearest Neighbours (KNN) 

The KNN algorithm is based on the observation that a sample with features that are similar to the 

ones of points of one particular class belongs to that class. These points are known as nearest 

neighbors. K represents the number of training data points lying in proximity to the test data point 

which is used to find the class. The parameter k specifies the number of neighbors (neighboring 

points) used to classify one particular sample point. Finally, the assignment of a sample to a 

particular class is done by having the k neighbors considered to “vote”. In this fashion, the class 

represented by the largest number of points among the neighbors ought to be the class that the 

sample belongs to. 

Consider k as the desired number of nearest neighbours and 𝐷 =  𝑃1, … , 𝑃𝑛 be the set of training 

samples in the form 𝑃1 = (𝑥𝑖, 𝑐𝑖), where 𝑥𝑖 is the d-dimensional feature vector of the point 𝑃𝑖 and 

𝑐𝑖 is the class that 𝑃𝑖 belongs to. For each p' = (x', c') we compute the 

distance d(x′,xi) between p′ and all 𝑝𝑖 belonging to D, then sort all points 𝑝𝑖 according to the 

key d(x′,xi). Next we select the first k points from the sorted list, those are the k closest training 

samples to p′, and then assign a class to p′ based on majority vote, see equation 14:  

𝑐′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦 ∑(𝑥𝑖, 𝑐𝑖) belonging to 𝐷, 𝐼(𝑦 = 𝑐𝑖)                           (14) 

(iv)  Classification and Regression Tree (CART) 

A decision tree is a flowchart-like tree structure where an internal node represents feature (or 

attribute), the branch represents a decision rule, and each leaf node represents the outcome. The 

topmost node in a decision tree is known as the root node. It learns to partition on the basis of the 

attribute value. It partitions the tree in recursively manner call recursive partitioning. This 

flowchart-like structure helps in decision making. Decision Tree is a white box type of ML 

algorithm. It shares internal decision-making logic, which is not available in the black box type of 

algorithms such as Neural Network. Its training time is faster compared to the neural network 

algorithm. The time complexity of decision trees is a function of the number of records and number 

of attributes in the given data. 

Decision tree algorithm is based on the following steps; 

STEP 1: Select the best attribute using Attribute Selection Measures (ASM) to split the records. 

a. Information Gain 

b. Entropy (for ID3) and Gini Impurity (for CART) 

c. Gain 

STEP 2: Make that attribute a decision node and break the dataset into smaller subsets. 
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STEP 3: Start tree building by repeating this process recursively for each child until one of the 

condition will match: 

a. All the tuples belong to the same attribute value 

b. There are no more remaining attributes 

c. There are no more instances. 

The Gini impurity is given in equation 15: 

𝐺𝑖𝑛𝑖 = 1 − ∑ (𝑝𝑖)2𝑛
𝑖=1                                  (15) 

Where 𝑝𝑖 is the probability of an object being classified to a particular class. 

Entropy is given in equation 16: 

𝐸 = −∑ 𝑝𝑖 𝑙𝑜𝑔2
𝑛
𝑖=1 (𝑝𝑖)                      (16) 

where pi is the probability of randomly selecting an example in class i. Information gain is given in 

equation 17: 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑝𝑎𝑟𝑒𝑛𝑡 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛   (17) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦
𝑝𝑎𝑟𝑒𝑛𝑡

 is the entropy of the parent node and 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 represents the average 

entropy of the child nodes that follow this variable. 

3.2 Evaluation Metrics of AKANDO 

Since AKANDO utilizes a machine learning approach for Android botnet detection, the 

effectiveness of AKANDO's machine learning component relies on several mathematical concepts: 

Accuracy: This metric represents the overall correctness of the model in classifying apps as benign 

or malicious. It is calculated as the ratio of correctly classified samples to the total number of 

samples (see equation 18): 

Accuracy = (True Positives + True Negatives) / (Total Samples)   (18) 

 True Positives (TP): Number of malicious apps correctly classified as malicious. 

 True Negatives (TN): Number of benign apps correctly classified as benign. 

Precision: This metric measures the proportion of identified malicious apps that are actually 

malicious. It is calculated in equation 19: 

Precision = TP / (TP + False Positives)   (19) 

 False Positives (FP): Number of benign apps incorrectly classified as malicious. 

Recall: This metric measures the proportion of actual malicious apps that are correctly identified by 

the model. It is calculated in equation 20: 

Recall = TP / (TP + False Negatives)    (20) 

False Negatives (FN): Number of malicious apps incorrectly classified as benign. 

F1-Score: This metric combines precision and recall into a single value, providing a balanced view 

of the model's performance. It is calculated as shown in equation 21: 

F1-Score = 2 * (Precision * Recall) / (Precision + Recall) )    (21) 
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False Alarm Rate (FAR): This metric specifically focuses on the rate of benign apps being 

misclassified as malicious. It is calculated as shown in equation 22: 

FAR = FP / (FP + TN)    (22) 

where FN: Number of malicious apps incorrectly classified as benign (False Negatives) and TP: 

Number of malicious apps correctly classified as malicious (True Positives). 

Matthew's Correlation Coefficient (MCC): This metric takes into account all four confusion 

matrix values (TP, TN, FP, FN) and provides a more balanced assessment of the model's 

performance compared to accuracy alone. It ranges from -1 (perfect disagreement) to +1 (perfect 

agreement). MCC values closer to +1 indicate better performance as shown in equation 23: 

MCC = (TP*TN - FP *FN) /sqrt((TP + FP)*(TP + FN)*(TN + FP)*(TN + FN))   (23) 

Where TP, TN, FP, FN: As defined previously (True Positives, True Negatives, False Positives, 

False Negatives). 

G-mean: This metric is the geometric mean of precision and recall, offering a balanced view 

between correctly identifying malicious apps (recall) and avoiding false positives (precision). It is 

particularly useful when dealing with imbalanced datasets, where the number of benign apps might 

significantly outweigh malicious ones as shown in equation 24: 

G-mean = sqrt(Precision * Recall)  (24) 

Sigmoid Function: The sigmoid function maps an input value between negative infinity and 

positive infinity to an output between 0 and 1. It is defined as shown in equation 25: 

f(x) = 1 / (1 + e^(-x))     (25) 

where e is the base of the natural logarithm (approximately 2.71828). 

Rectified Linear Unit (ReLU) Function: The ReLU function outputs the input directly if it's 

positive and outputs 0 otherwise. It is defined as shown in equation 26: 

f(x) = max(0, x)     (26) 

Binary Cross-Entropy Loss Function: During training, the binary cross-entropy loss function 

measures the discrepancy between the predicted botnet probability (p) and the actual label (y) (0 for 

benign, 1 for botnet). It is defined as shown in equation 27: 

loss = - (y * log(p) + (1 - y) * log(1 - p)) (27) 

Feature Importance Analysis: Techniques like L1/L2 regularization add a penalty term to the loss 

function based on the magnitude of the weights (w) in the neural network. This encourages the 

model to assign lower weights to less important features. The L1 regularization penalty term is 

defined as shown in equation 28: 

penalty = λ * ||w||_1     (28) 

where λ is a hyperparameter controlling the strength of the penalty and ||w||_1 denotes the L1 norm, 

which is the sum of the absolute values of all weights. Similarly, L2 regularization uses the L2 norm 

(sum of squares of weights) as shown in equation 29: 

penalty = λ * ||w||_2^2    (29) 

By incorporating these penalties into the loss function, the model is discouraged from assigning 

overly large weights to any specific feature, promoting a more balanced and interpretable model. 
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3.3 Benefits of AKANDO 

(i) Improved Accuracy 

The hybrid feature extraction approach combined with the machine learning model's learning 

capabilities has the potential to achieve superior botnet detection accuracy compared to methods 

that rely solely on static or dynamic analysis. By leveraging a more comprehensive feature set, 

AKANDO can potentially identify intricate patterns indicative of malicious behavior. 

(ii) Adaptability 

The use of a multi-layered neural network architecture allows AKANDO to adapt to evolving 

botnet tactics. As botnet operators develop new techniques to evade detection, the model can be re-

trained with fresh data to maintain effectiveness. This continuous learning capability enhances the 

long-term sustainability of the detection system. 

(iii) Reduced False Positives 

The combined analysis approach and the focus on minimizing false positives during model training 

aim to reduce the number of legitimate apps flagged as malicious. This is crucial for maintaining 

user trust and avoiding unnecessary disruptions. 

Limitations: 

(i) Data Availability 

The effectiveness of AKANDO relies heavily on the quality and size of the training dataset. A 

comprehensive dataset encompassing diverse botnet samples and a wide range of benign apps is 

essential for optimal model performance. However, obtaining such data can be challenging due to 

privacy concerns and the dynamic nature of botnet threats. 

(ii) Computational Cost 

While potentially more accurate, the hybrid analysis approach involving both static and dynamic 

analysis could be computationally expensive compared to methods relying solely on static analysis. 

This may necessitate resource optimization techniques or hardware acceleration to ensure efficient 

operation on resource-constrained mobile devices. 

(iii) Evasion Techniques 

Botnet operators might develop new techniques to evade detection by AKANDO. These could 

include code obfuscation, dynamic code loading, or exploiting vulnerabilities in the runtime 

environment. Continuous research and adaptation of the detection system are crucial to maintain 

effectiveness against evolving threats. 

4. Future Research Directions 

Although the theoretical foundations of AKANDO appear promising, thorough real-world testing 

on large-scale datasets is essential to validate its effectiveness in practical scenarios. This evaluation 

in our next publication will involve diverse botnet samples and various benign applications to 

comprehensively assess the model's accuracy and generalizability. 

Exploring alternative machine learning architectures, such as recurrent neural networks (RNNs), 

could be beneficial for analyzing sequential data like network traffic patterns. RNNs might offer 

improved capabilities in identifying botnet activity hidden within communication sequences. 

Integrating contextual information into the model, such as user behavior patterns or app usage 

statistics, could potentially enhance detection accuracy. By understanding how users interact with 
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apps, the system might be better equipped to differentiate between malicious and legitimate 

behavior. 

Implementing federated learning could enable continuous model improvement without 

compromising user privacy. Federated learning allows training on distributed datasets residing on 

individual devices, protecting sensitive user data while still allowing the model to learn from a 

broader range of samples (Yang et al., 2019). 

Conclusion 

AKANDO presents a promising approach for Android botnet detection by combining static and 

dynamic analysis with machine learning. A critical aspect of AKANDO is its emphasis on 

minimizing false positives. False positives occur when a legitimate app is mistakenly flagged as 

malicious. Its hybrid feature extraction, multi-layered neural network architecture, and focus on 

minimizing false positives offer potential advantages over existing methods. This can significantly 

impact user experience and erode trust in the detection system. While limitations exist regarding 

data availability, computational cost, and potential evasion techniques, future research directions 

aim to address these concerns and further enhance AKANDO's effectiveness.  

Continued exploration and optimization of this hybrid approach will significantly contribute to the 

ongoing fight against botnets on Android devices. By combining static and dynamic analysis, 

AKANDO aims to create a more robust feature set that can effectively differentiate between 

malicious and benign behavior. Additionally, the machine learning model can be fine-tuned to 

prioritize accuracy while minimizing false positives. 
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