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Abstract:  

 

In this paper the one class of controllable differential inclusions with uncertainty parameter is 

considered. For this model of dynamic control systems under conditions of indeterminacy the 

minimax control problem is researched. In this problem the necessary and sufficient conditions of 

optimality is obtained.  
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1. Introduction 

Deterministic models do not meet the modern requirements for effective management of complex 

technological and economic processes, for which errors and inaccuracies of the determining process 

parameters are significant. To describe the dynamics of processes without the help of probabilistic 

characteristics of the model's uncertainties, one can use differential equations with a multi-valued 

right-hand side (they are called differential inclusions), i.e. relations of the form 

),( xtFx , (1) 

where x  is a phase vector from the Euclidean n-dimensional space nR , 
dt

dx
x   is a velocity 

vector, t is time, ),( xtF  is a given multi-valued map, i.e., a function that corresponds to each 

moment of time t and each point nRx  to the set ),( xtF  of nR .  
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The first studies on differential equations with a multi-valued right-hand side were carried out in the 

works of S. Zaremba and A. Marsho in the 30 s of the XX century. Only after A. F. Filippov [1] 

made the first and successful application of differential equations with a multi-valued right-hand 

side to the problems of optimal control, since the 60s of the XX century, there was a great interest in 

differential inclusions. Studies of differential equations with a discontinuous right-hand side [2] 

have shown that the generalization of the concept of solving such equations is possible using the 

differential inclusion model. Differential inclusions have found applications in differential games 

and mathematical economics. 

The questions concerning the theory of differential inclusions are very diverse. Since differential 

inclusions are a generalization of differential equations ),( xtfx   to the case where the right-

hand side of ),( xtf  is multi-valueds, all the usual problems inherent in differential equations 

arise. These include the existence and boundedness of the solution, the continuous dependence of 

solutions on initial conditions and parameters, periodic solutions, etc. On the other hand, the 

differential inclusion has an entire family of trajectories from each starting initial point 0x . As a 

result, other specific questions also arise, such as the closeness, compactness, convexity and 

connectivity of the solution family, the properties of the integral funnel and the reachability set, and 

many others [3]. 

The theory of differential inclusions develops in various directions. We study differential-functional 

and integro-differential inclusions [4,5], differential inclusions with delays [6], partial differential 

inclusions [7], differential inclusions with a fuzzy right-hand side [8], and other classes of 

differential inclusions [9 –14]. 

2. Object of research and methods. 

In the development of the theory of differential inclusions, a qualitative shift was the beginning of 

research on controlled differential inclusions of the form [ 10,12,13] 

UuuxtF
dt

dx
 ),,,( , (2) 

where ),,( uxtF  is a multi-valued mapping that depends on the control parameter )(tuu   . 

Differential inclusions of the form (2) arise in the study of control systems under conditions of 

uncertainty. In fact, let the following control object model be given: 

Uuwuxtf
dt

dx
 ),,,,( , (3) 

where )(tuu   is the control parameter, and )(tww   is the external influence parameter, 

and the information about this parameter is minimal, i.e. only the area of its change is known: 

.Ww  Under fairly general assumptions, i.e. when functions ),,,( wuxtf  are measurable by t , 

continuous by ),,( wux , and )(tww   are measurable, the control system (3) is equivalent to a 

controlled differential inclusion 

),,,( Wuxtf
dt

dx
 . 

The problems for differential inclusions are of interest from the point of view of their practical 

application to the problems of various classes of control systems. For control systems in conditions 

of uncertainty, the tasks of controlling an ensemble of trajectories are of great importance. They 

lead to similar problems for differential inclusions to control parameters. The problems of 

controlling an ensemble of trajectories for control systems under conditions of uncertainty and 

differential inclusions are considered in [10, 12 –18]. Questions of analysis and synthesis of control 
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systems lead to the need to study models taking into account the influence of various internal and 

external parameters. The class of such models includes differential inclusions with control 

parameters and uncertainty [17 – 20]. 

Consider the model of the control system in the form of the following differential inclusion 

),(),()( qtDutBxtAx  , ],[,,,)( 1000 ttTtQqVuXtx  ,  (4) 

where x  – n -dimensional state vector, u - m -dimensional control vector, q - k -dimensional 

vector of external influences, )(tA - nn -matrix, 
nRutB ),(  ,

nRqtD ),(  , 
nRX 0  , 

mRV   , 
kRQ   . With respect to parameter q , we will assume that it is constant over the 

interval ],[ 10 ttT  , but only its set of possible values Q  is known . 

The control system (4) will be studied under the following assumptions: 

1) the elements of matrix )(tA  are summable by ],[ 10 ttT   ; 2) 
nRX 0 , 

mRV  , 
kRQ   – 

convex compacts; 3) for any ],[ 10 ttTt  , QqVu  ,  sets ),( utB  and ),( qtD  non-empty 

compacts of 
nR  ; 4) the multi-valued map ),(),( utBut   is measurable by ],[ 10 ttTt  , 

continuous by Vu , and integrally bounded, i.e. there is a function ],[ 10 ttT   summable by 

)(tB  such that )}()},(:sup{ tutB B  , VTut ),( ; 5) the multi-valued map 

),(),( qtDqt   is measurable by ],[ 10 ttTt  , continuous by Qq , and integrally bounded, 

i.e. there is a function ],[ 10 ttT   summable by )(tD  such that )()},(:sup{ tutB D  ,

VTut ),( . 

Definition 1. By admissible controls for system (4), we mean measurable bounded m -vector 

functions )(tuu  , ],[ 10 ttTt  , which take almost everywhere by ],[ 10 ttT   values from the 

convex compact V  . 

Definition 2. An admissible trajectory corresponding to control )(tuu  , ],[ 10 ttTt  , and 

parameter Qq  is an absolutely continuous n -vector function ),,()( qutxtx   that satisfies 

almost everywhere on ],[ 10 ttT   the differential inclusion (4) and the initial condition 00 )( Xtx  . 

Let: U  – the set of all permissible controls; ),( quH  – the set of admissibly trajectories 

corresponding to the pair QUqu ),( ; )},()(),(:{),,( quHxtxRqutX n   . For model 

(4), topological properties of sets ),( quH  and ),,( qutX  are important . Using the methods of [20] 

, we can study the convexity and compactness properties of sets ),( quH  and ),,( qutX  , as well as 

the continuity, closure, and convexity of multi-valued maps: ),(),( quHqu T , 

),,(),,( qutXqut  . 

Consider the set ),,(),( 11 qutXquX  , which is the set of all such points of the state space that can 

be reached at moment 1t , moving along the admissible trajectories of ),()( quHx   . We will 

manage this terminal state ),(1 quX  by evaluating the quality of the control process using the 

following non-smooth functionality:  

}),(:),(minsup{)),((
1

11 





l

i

i
Zz

quXPzquXg
ii

 ,   (5) 
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where P – ns  is a matrix, liZ i ,1,  , are compacts of sR . Given that in the system (4), parameter 

Qq  has the character of uncertainty, the terminal state ),(1 quX  will be controlled according to 

the minimax principle, i.e., according to the principle of obtaining a guaranteed result. So, the 

following minimax problem is considered 

UuquXg
Qq




min,)),((sup 1 .     (6) 

Control Uu * , minimizing non-smooth functionality of the form 

)),((sup)( 1 quXguJ
Qq

  (7) 

we call optimal control in problem (6). Here we will study the necessary and sufficient conditions 

optimality in nonsmooth control problem (6). 

Let ),( tF  be the fundamental matrix of solutions to equation xtAx )( , EF ),(  . According 

to the results of the theory of differential inclusions, for any QUqu ),( , the set ),(1 quX  has 

the representation: 

 
1

0

)],())(,()[,(),(),( 10011

t

t

dtqtDtutBttFXttFquX .   (8) 

Let ),(sup),(  yYС
Yy

  be a support function of a bounded set nRY   . Using formula (8), the 

properties of the support functions and the integral of multi-valued maps, we obtain that for any 

QUqu ),( , the set ),(1 quX  is a convex compact of nR  and its support function has the form: 

 
1

0

))],,())(,()[,((),),(()),,(( 10011

t

t

dtqtDtutBttFСXttFСquXС  .  (9) 

Further, since 

),(min),(min),(min),(min
1

,1,
1

zPzPzPPz
coZzcoZz

l

i

i
liZz

l

i

i
Zz

iiii










  , 

then, using the formula (9) and the minimax theorem from convex analysis, we obtain that for the 

functional (5) the formula is valid 

}))],,())(,()[,((),),(({min)),((
1

0

10011  


t

t
coZz

dtzPqtDtutBttFСzPXttFСquXg ,   (10) 

где 



l

i

izz
1

, 



l

i

iZZ
1

, coZ  –the convex hull of the set Z  . 

3. Main results. 

In the future, we will assume that, along with the conditions 1) – 5), the condition is satisfied: 6) the 

support function of the set ),( qtD  is concave by Qq . 

Using (7), (9), and (10), we have: 

),,(minmax)( zquuJ
coZzQq



 ,     (11) 

where 
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 
1

0

)),(),,())(,(()),(,(),,( 00

t

t

dtztqtDtutBСztXСzqu  , 

),( zt – absolutely continuous solution of system zPttA  )(,)( 1 . Functional ),,( zqu  is 

concave by Qq and convex by coZz . Therefore, applying the minimax theorem mentioned 

above, we obtain the following formula from (11): 

])),(),,())(,((max)),(,([min)(
1

0

00  


t

t
QqcoZz

dtztqtDtutBСztXСuJ  .  (12) 

Let's introduce the following functionals:  

 


1

0

1

0

)),(),,((max)),()),(,(()),(,(),( 00

t

t
Qq

t

t

dtztqtDСdtzttutBСztXСzu  ,  (13) 

 


1

0

1

0

)),(),,(()),(),,((min)),(,(),( 00

t

t

t

t
Vv

dtztqtDСdtztvtBСztXСzq  .  (14) 

Theorem 1. Let: 1) ],[),( 10

* ttTttu  , – optimal control in the problem (6); 

2) coZz *
 – point of the global minimum of the function ),( * zuz  . 

Then for almost all ],[ 10 ttTt   the equality holds 

)),()),(,(()),(),,((min *** zttutBСztvtBС
Vv

 


.    (15) 

Proof. Since ],[),( 10

* ttTttu  , is the optimal control in problem (6), then 

UuuJuJ  ),()( *
, where )(uJ  has the form (7). Therefore, using (12) and (13), we have: 

Uuzuzu
coZzсoZz




),,(min),(min *  .    (16) 

Let coZz *  be an point of the global minimum of function ),( * zuz   . Then from (16) we get 

UudtzttutBСdtzttutBС

t

t

t

t

  ,)),()),(,(()),()),(,((
1

0

1

0

***  . 

Therefore, 

 


1

0

1

0

)),(),,((min)),()),(,(( ***

t

t
Vv

t

t

dtztvtBСdtzttutBС  . 

From here we get 

 


1

0

1

0

)),(),,((min)),()),(,(( ***

t

t
Vv

t

t

dtztvtBСdtzttutBС  .   (17) 

Due to the properties of the Lebesgue integral, it follows from (17) that equality (15) holds for 

almost all ],[ 10 ttTt  .  



273  |  INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY       www.multijournals.org 

 

Let us use the result of the proved theorem. First, given (7) and (12), we have a chain of equalities:

  
])),(),,((max)),(),,((min)),(,([min

1

0

1

0

00

t

t
Qq

t

t
VvcoZz

dtztqtDСdtztvtBСztXС   

  
])),(),,((max)),()),(,(()),(,([minmin

1

0

1

0

00

t

t
Qq

t

t
coZzUu

dtztqtDСdtzttutBСztXС   

)),((maxmin 1 quXg
QqUu 

 .         (18) 

Next, let ],[),( 10

* ttTttu   be the optimal control in problem (6), and coZz *  be the point of 

the global minimum of function ),( * zuz   . Then, using (7), (12), (13), (15), we have: 




),(),(min),(minmin)),((maxmin ***

1 zuzuzuquXg
coZzcoZzUuQqUu

  

  

1

0

1

0

)),(),,((max)),()),(,(()),(,( ****

00

t

t
Qq

t

t

dtztqtDСdtzttutBСztXС   

  

1

0

1

0

)),(),,((max)),(),,((min)),(,( ***

00

t

t
Qq

t

t
Vv

dtztqtDСdtztvtBСztXС   

 


1

0

1

0

)),(),,((max)),(),,((min)),(,([min 00

t

t
Qq

t

t
VvcoZz

dtztqtDСdtztvtBСztXС  .  (19) 

Now, taking into account the definition (14) of the functional ),( zq  , from (18) and (19) we get 

that *z  is the point of the global minimum of the function ),(max zqz
Qq



 . Therefore, the 

following necessary optimality conditions are valid. 

Theorem 2. Let ],[),( 10

* ttTttu  , be the optimal control in problem (6). Then there exists a 

coZz *  – point of the global minimum of the function ),(max zqz
Qq



  by coZ  , such that, for 

almost all ],[ 10 ttTt  , equality (15) holds. 

Now we give sufficient optimality conditions in problem (6). 

Theorem 3. Let coZz *  be the point of the global minimum of a function ),(max zqz
Qq



  by 

coZ , and ],[),( 10

* ttTttu   be a admissible control satisfying almost everywhere on ],[ 10 ttT   

the relation (15). Then )(* tu  is the optimal control in problem (6). 

4. Discussion of the results and conclusion. 

The necessary optimality condition for the considered non-smooth minimax-type problem is given 

in Theorem 1 in the form of relation (15). It should be noted that in the case where ),(),( utBut   

is a single-valued mapping, condition (15) takes the form well known from the Pontryagin 

maximum principle [3]. 

To apply condition (15), the global minimum point coZz *
 of function ),( * zuz   must be 

known . And in theorem 2, it is stated that the point coZz *
 used in condition (15) is the point of 

the global minimum of function ),(max zqz
Qq



  . Since minimizing function ),(max zqz

Qq



  
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does not require any information about the desired optimal control, theorem 2 can be considered 

more convenient from the point of view of practical application.  

Theorem 3 actually states that the optimality conditions obtained in Theorem 2 are sufficient. So, 

combining theorems 2 and 3, we can say that the main result of the work is the following 

optimality criterion: in order for the admissible control Tttu ),(*
 to be optimal in problem (6), it 

is necessary and sufficient that the point coZz *
 of the global minimum of function 

),(max zqz
Qq



  exists and that the relation (16) is performed almost everywhere on ],[ 10 ttT  . 

In conclusion, we note that in the work developing the research methods [18], the results are 

obtained, which are the theoretical basis for the development of an algorithm for constructing 

optimal control in the considered minimax problem. 
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