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1. Introduction

Deterministic models do not meet the modern requirements for effective management of complex
technological and economic processes, for which errors and inaccuracies of the determining process
parameters are significant. To describe the dynamics of processes without the help of probabilistic
characteristics of the model's uncertainties, one can use differential equations with a multi-valued
right-hand side (they are called differential inclusions), i.e. relations of the form

X e F(t,x), (1)

. . . . ) dx . .
where X is a phase vector from the Euclidean n-dimensional space R", x = —— is a velocity

vector, t is time, F (t, x) is a given multi-valued map, i.e., a function that corresponds to each
moment of time t and each point x « R" to the set F (t, x) of R".
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The first studies on differential equations with a multi-valued right-hand side were carried out in the
works of S. Zaremba and A. Marsho in the 30 s of the XX century. Only after A. F. Filippov [1]
made the first and successful application of differential equations with a multi-valued right-hand
side to the problems of optimal control, since the 60s of the XX century, there was a great interest in
differential inclusions. Studies of differential equations with a discontinuous right-hand side [2]
have shown that the generalization of the concept of solving such equations is possible using the
differential inclusion model. Differential inclusions have found applications in differential games
and mathematical economics.

The questions concerning the theory of differential inclusions are very diverse. Since differential
inclusions are a generalization of differential equations X = f (t, X) to the case where the right-
hand side of f (t, X) is multi-valueds, all the usual problems inherent in differential equations
arise. These include the existence and boundedness of the solution, the continuous dependence of
solutions on initial conditions and parameters, periodic solutions, etc. On the other hand, the
differential inclusion has an entire family of trajectories from each starting initial point X, . As a
result, other specific questions also arise, such as the closeness, compactness, convexity and

connectivity of the solution family, the properties of the integral funnel and the reachability set, and
many others [3].

The theory of differential inclusions develops in various directions. We study differential-functional
and integro-differential inclusions [4,5], differential inclusions with delays [6], partial differential
inclusions [7], differential inclusions with a fuzzy right-hand side [8], and other classes of
differential inclusions [9 —-14].

2. Object of research and methods.

In the development of the theory of differential inclusions, a qualitative shift was the beginning of
research on controlled differential inclusions of the form [ 10,12,13]

% e F(t,x,u),ueU , (2
where F (t, X, u) is a multi-valued mapping that depends on the control parameter u = u(t) .

Differential inclusions of the form (2) arise in the study of control systems under conditions of
uncertainty. In fact, let the following control object model be given:

%: f(t,x,u,w),uel  (3)

where u = u(t) is the control parameter, and w = w(t) is the external influence parameter,
and the information about this parameter is minimal, i.e. only the area of its change is known:
w = W. Under fairly general assumptions, i.e. when functions f (t, x,u,w) are measurable by t,
continuous by (x,u,w), and w = w(t) are measurable, the control system (3) is equivalent to a
controlled differential inclusion

dx
— e f(t,x,u,W).
i ( )

The problems for differential inclusions are of interest from the point of view of their practical
application to the problems of various classes of control systems. For control systems in conditions
of uncertainty, the tasks of controlling an ensemble of trajectories are of great importance. They
lead to similar problems for differential inclusions to control parameters. The problems of
controlling an ensemble of trajectories for control systems under conditions of uncertainty and
differential inclusions are considered in [10, 12 —18]. Questions of analysis and synthesis of control
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systems lead to the need to study models taking into account the influence of various internal and
external parameters. The class of such models includes differential inclusions with control
parameters and uncertainty [17 — 20].

Consider the model of the control system in the form of the following differential inclusion
X e A(t)x+B(t,u) + D(t,q), x(t,) e X,,ueV,qeQ,teT =[t,,t;], (4)

where X — n-dimensional state vector, U-m -dimensional control vector, -k -dimensional
vector of external influences, A(t)-nxn-matrix, B(t,u)c R" ,D(t,q)cR" , X,<cR" ,
V < R™ , Q< R* . With respect to parameter g, we will assume that it is constant over the
interval T =[t,,t,], but only its set of possible values Q is known .

The control system (4) will be studied under the following assumptions:

1) the elements of matrix A(t) are summable by T =[t,,t,] ; 2) X, cR",VcR"™, QcR" —
convex compacts; 3) forany teT =[t,,t,], ueV,qeQ sets B(t,u) and D(t,q) non-empty
compacts of R" ; 4) the multi-valued map (t,u) — B(t,u) is measurable by teT =[t,,t,],
continuous by u eV, and integrally bounded, i.e. there is a function T =[t,,t;] summable by
P (t) such thatsup{l|y|:» € Bt,u)}< B ()}, (t,u) eTxV; 5) the multi-valued map
(t,g) —> D(t,q) is measurable by teT =[t,,t,], continuous by qeQ, and integrally bounded,
i.e. there is a function T =[t,,t,] summable by Sy (t) such that sup{|y|:y» € B(t,u)}< By (t),
(t,u)eTxV.

Definition 1. By admissible controls for system (4), we mean measurable bounded m -vector

functions u=u(t), teT =[t,,t,], which take almost everywhere by T =[t,,t;] values from the
convex compact V .

Definition 2. An admissible trajectory corresponding to control u=u(t), teT =[t,,t,], and
parameter q € Q is an absolutely continuous n -vector function x(t) = x(t,u,q) that satisfies
almost everywhere on T =[t,,t,] the differential inclusion (4) and the initial condition X(t,) € X,,.

Let: U - the set of all permissible controls; H(u,q) — the set of admissibly trajectories
corresponding to the pair (u,q) eU xQ; X(t,u,q)={&eR": &=x(t), x() € H(u,q)}. For model
(4), topological properties of sets H(u,q) and X(t,u,q) are important . Using the methods of [20]
, We can study the convexity and compactness properties of sets H(u,q) and X(t,u,q) , as well as
the continuity, closure, and convexity of multi-valued maps: (u,q) >H(u,q),
(t,u,q) > X(t,u,q).

Consider the set X, (u,q) = X(t,,u,q), which is the set of all such points of the state space that can
be reached at moment t,, moving along the admissible trajectories of x(-) € H(u,q) . We will

manage this terminal state X,(u,q) by evaluating the quality of the control process using the
following non-smooth functionality:

g(X,(u,0)) =sup{>_ min(z;,PE): & € X, (u, )}, (5)

i=L A4
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where P —sxn isamatrix, Z;, i = 11, are compacts of R®. Given that in the system (4), parameter

q € Q has the character of uncertainty, the terminal state X, (u,q) will be controlled according to

the minimax principle, i.e., according to the principle of obtaining a guaranteed result. So, the
following minimax problem is considered

supg(X,(u,q)) > min,ueU. (6)
qeQ

Control u” €U, minimizing non-smooth functionality of the form

J(u) :sugg(xl(u,q)) (7)

we call optimal control in problem (6). Here we will study the necessary and sufficient conditions
optimality in nonsmooth control problem (6).

Let F(t,z) be the fundamental matrix of solutions to equation X = A(t)x, F(z,7) = E . According

to the results of the theory of differential inclusions, for any (u,q) €U xQ, the set X,(u,q) has
the representation:

Xy (U, ) = F(t, 1) X, + ] F(t,,[B(t,u(t) + D(t, q)]dt. (8)

to

Let C(Y,w)=sup(y,) be a support function of a bounded set Y = R" . Using formula (8), the

yeY
properties of the support functions and the integral of multi-valued maps, we obtain that for any
(u,g) eU xQ, the set X, (u,q) is aconvex compact of R" and its support function has the form:

C(Xy(u,q)yw) = C(F(tl'tO)XO’l//)+J1.C(F(t1’t)[B(t1u(t))+ D(t.a)l.y)dt. 9)

)
Further, since

S min(z, P& = min (P&, 2) = min(PE,2) = min(&, P'),

z;€Z;,i=L1

then, using the formula (9) and the minimax theorem from convex analysis, we obtain that for the
functional (5) the formula is valid

30X, (0,0)) = MIKC(F (1) X, P2) + [ C(F (@, DB U() + D& )] PG, (10)

to
| |
rae z :Zzi , Z :ZZi , coZ —the convex hull of the set Z .
i=1 i=1

3. Main results.

In the future, we will assume that, along with the conditions 1) — 5), the condition is satisfied: 6) the
support function of the set D(t,q) is concave by qeQ.

Using (7), (9), and (10), we have:
J(u) =maxminy(u,q,z), (1)

qeQ zecoZ

where
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7(u,9,2) = C(Xq,p (1, Z))+jC(B(t,U(t))+ D(t, ).y (t, 2))dt,

to

w (t, z) — absolutely continuous solution of system y = A'(t)y, w(t,) =P'z. Functional y(u,q,z) is
concave by qeQand convex by zecoZ. Therefore, applying the minimax theorem mentioned
above, we obtain the following formula from (11):

by

J(u) =min[C(X,, (&, 2)) + ngij(B(t,u(t)H D(t,a),w(t, 2))dt]. (12)
to

Let's introduce the following functionals:

1(0,2) = CX1(1,2) + | CBAUWO) (8 2))dt+ max [ C(D @)y (), (13

to

P(0.2) = CXouy(ty, ) + [ MINCBEY) (1, 2)dt+ [ COE Ayt ). (14)

)
Theorem 1. Let: 1) u™(t),t e T =[t,,t,], — optimal control in the problem (6);
2) 2" ecoZ — point of the global minimum of the function z — u(u”,z).

Then for almost all teT =[t,,t,] the equality holds

min C(B(t,v).w (t,27)) = C(B(t.u" (t).w(t.2°)). (15)

Proof. Since u”(t),t e T =[t,,t,], is the optimal control in problem (6), then

J(U") < J(u), YueU , where J(u) has the form (7). Therefore, using (12) and (13), we have:

min u(u”,z) < min x(u,z), YueU. (16)

zecoZ

Let z* ecoZ be an point of the global minimum of function z — x(u”,z) . Then from (16) we get

tjl(:(B(t,u"(t)),://(t, z7))dt < tjC(B(t,u(t)),l,y(t, z7))dt, YueU.

to to

Therefore,

tjC(B(t, u (), (t,z))dt< tjrpuvn C(B(t,v),w(t,z"))dt.

From here we get
tj‘C(B(t,u”(t)),z,z/(t,z*))dt = }rplvn C(B(t,v),w(t,z7))dt. a7

Due to the properties of the Lebesgue integral, it follows from (17) that equality (15) holds for
almostall teT =[t,,t,].
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Let us use the result of the proved theorem. First, given (7) and (12), we have a chain of equalities:

min[C(X o,y (t,2)) +tjfpeivn C(B(t,v),p(t, 2))dt + T%X}C(D(t, Q). (t,2))dt] =

=minmin[C(X,,y(t,,2)) +]1.C(B(t,u(t)),w(t, z))dt+ TSDX].C(D(L q),w(t,z))dt] =

uel zecoZ ;
=minmax g(X,(u,q)). (18)
ueU qeQ

Next, let u”(t),t e T =[t,,t,] be the optimal control in problem (6), and z" € coZ be the point of
the global minimum of function z — x(u”,z) . Then, using (7), (12), (13), (15), we have:

min max g(X,(u,q)) = minmin z(u,z) = mirzm(u*, 2)=pU’,z") =

ueU qe ueU zecoZ

=C(Xoy(t,,27)) + tIlC(B(t,u*(t)),l//(t, z°))dt+ TQQXTC(D(LQ)J//(L z°))dt =

)

= C(X,p(t,, z*))+tjr516i/n C(B(t,v),w(t,2"))dt + ngxifC(D(t,q),z//(t, z*))dt >

> [rgciorzl[C(Xo,z,//(t0 ,2)) +Tnvli/n C(B(t,v),p(t,2))dt + T%thC(D(t’ q),w(t,z))dt. (19

Now, taking into account the definition (14) of the functional p(q,z) , from (18) and (19) we get
that z~ is the point of the global minimum of the function z—>m%x,o(q,z). Therefore, the
ge

following necessary optimality conditions are valid.

Theorem 2. Let u (t),teT =[t,,t,], be the optimal control in problem (6). Then there exists a
2" ecoZ — point of the global minimum of the function z — r?ea(lgx/)(q, z) by coZ , such that, for
almostall teT =[t,,t,], equality (15) holds.

Now we give sufficient optimality conditions in problem (6).

Theorem 3. Let z" ecoZ be the point of the global minimum of a function z — r?ggx/)(q, z) by
coZ, and u”(t),teT =[t,,t,] be a admissible control satisfying almost everywhere on T =[t,,t,]
the relation (15). Then u’ (t) is the optimal control in problem (6).

4. Discussion of the results and conclusion.

The necessary optimality condition for the considered non-smooth minimax-type problem is given
in Theorem 1 in the form of relation (15). It should be noted that in the case where (t,u) — B(t,u)
is a single-valued mapping, condition (15) takes the form well known from the Pontryagin
maximum principle [3].

To apply condition (15), the global minimum point z* €coZ of function z — u(u”,z) must be

known . And in theorem 2, it is stated that the point z~ € coZ used in condition (15) is the point of
the global minimum of function z —» m%x,o(q,z) . Since minimizing function z — m%x,o(q,z)
qe ge
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does not require any information about the desired optimal control, theorem 2 can be considered
more convenient from the point of view of practical application.

Theorem 3 actually states that the optimality conditions obtained in Theorem 2 are sufficient. So,
combining theorems 2 and 3, we can say that the main result of the work is the following
optimality criterion: in order for the admissible control u”(t),t € T to be optimal in problem (6), it
is necessary and sufficient that the point z ecoZ of the global minimum of function
zZ—> rgwea(l?x p(q,2) exists and that the relation (16) is performed almost everywhere on T =t t,].

In conclusion, we note that in the work developing the research methods [18], the results are
obtained, which are the theoretical basis for the development of an algorithm for constructing
optimal control in the considered minimax problem.
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