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Data augmentation is a highly effective technique for improving modern image classifiers’ accuracy
and has continuously improved over the years. In this paper, we propose a different approach to
implementing AutoAugment policies known as ’Color-Spatial AutoAugment,” Our implementation
utilizes the best policies dis- covered by AutoAugment for specific datasets. It categorizes them into
color and spatial, thereby improving image classification accuracy. Applied to CIFAR-10, CIFAR-
100, and SVHN datasets, our method significantly improved CIFAR-10 and CIFAR-100, achieving
top-1 accuracies of 91.1% and 60%, respectively. These results mark a 5.54% improvement on
CIFAR-10 and a substantial 7.05% increase on CIFAR-100 over the traditional AutoAugment. On
the SVHN dataset, how- ever, our approach was a bit short, yielding a top-1 accuracy of 91.15%
compared to AutoAugment’s 93.55%. These findings highlight the potential of Color-Spatial
AutoAugment and the improvement over AutoAugment within the same training conditions.
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1. INTRODUCTION

Deep learning networks are highly effective machine learning systems, especially when trained with
vast data. Data augmentation stands out as a robust method to enrich the quantity and diversity of
data by applying a set of predefined augmentations randomly [1, 15, 23]. Within computer vision,
several standard augmentation techniques can alter an image to provide a new perspective without
distorting its essential content. These techniques include shifting the image by a few pixels,
modifying its contrast, flipping it horizontally or vertically, or cropping a section of it [21, 22, 31].

While the machine learning and computer vision communities have dedicated considerable effort to
developing advanced network architectures (e.g., [10, 11, 20, 24— 27, 32]), the exploration of
enhanced data augmentation methods that introduce more invariances has not received as much
attention. Take, for instance, the data augmen- tation technique used in the AlexNet network [15]
unveiled in 2012; it has become somewhat of a standard for ImageNet [6], with only minor
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adjustments made since its introduction.

The different invariance of an image can also be hardcoded into a convolutional network structure.
However, implementing data augmentation strategies is often more straightforward than embedding
these invariances into the model’s architecture. Over the years, data augmentation techniques have
improved, and many state-of-the-art techniques have been developed, one notable example being
AutoAugment [4].

AutoAugment is designed to identify the best augmentation strategies for image classification tasks
automatically. The main idea behind AutoAugment is to use a search algorithm to find effective
combinations of various data augmentation transfor- mations. However, it is worth noting that even
the most optimal augmentation policies discovered for a specific dataset might not perform well on
others. For example, hori- zontal flipping of images during training is an effective data
augmentation method on CIFAR-10 [14] but not on MNIST [7] due to the different symmetries in
these datasets. While AutoAugment can effectively enhance accuracy by finding the best augmen-
tation policies for a specific dataset, our implementation, Color-Spatial AutoAugment, takes this
further. By applying the discovered policies more selectively and incorpo- rating color and spatial
dimensions, we can tailor the augmentation to each image, achieving even more significant
performance improvements.

AutoAugment was trained using a subset of CIFAR-10, called reduced CIFAR- 10,” which
consists of 4000 randomly selected images. The augmentation policies found on the reduced
CIFAR-10" were then applied to both CIFAR-10 and CIFAR-100 [14] due to the similarity between
both datasets [4]. The discovered policies consisted of a sequence of two or three sub-policies,
where each sub-policy contains two augmenta- tion operations. These policies specify the sequence
of augmentation operations to be applied to each training sample to generate an augmented version
of that image; each operation within these sub-policies is associated with specific hyperparameters,
such as the magnitude of the transformation.

Color-Spatial AutoAugment refined the approach by taking the sub-policies discov- ered by
AutoAugment and categorizing the augmentation operations into two distinct categories: color and
spatial. Each augmentation operation is listed uniquely within these categories without any
repetitions. Afterward, one operation from each cate- gory is randomly selected and applied to
produce an augmented image. This method ensures a diverse and unique application of
augmentation techniques to enhance image training sets effectively.

The implementation initial training using a self-supervised learning approach, specifically the
SimCLR method[3], on a smaller-scale network, ResNet18 [11]. The training was done on an RTX
2080Ti, utilizing a batch size of 64, a learning rate of 0.01, an SGD optimizer, and a cosine
scheduler. The network was then trained for 300 epochs, and the validation was done on the same
network structure with a lin- ear classifier added as the final layer for 100 epochs. The network
achieved a 17.51% error rate when using Color-Spatial AutoAugment compared to AutoAugment,
where the network achieved 22.52%. While for WideResNet 28-10, the error rate was 17.87% when
using Color-Spatial AutoAugment compared to AutoAugment with 20.93%.

The ResNet50 network demonstrated our best performance for the final test, uti- lizing a learning
rate of 0.025, following the recommended learning rate of the official SImCLR paper sections B.6
and B.7. The training was done for 1000 epochs, result- ing in an error rate of 8.9% while using
Color-Spatial AutoAugment compared to AutoAugment, which had an error rate of 14.44%.

The CIFAR-100 dataset also improved performance on the ResNet50 network under the same
conditions as CIFAR-10. The network achieved a 60% accuracy rate using Color-Spatial
AutoAugment, compared to a 52.95% accuracy rate with AutoAugment.

While the SVHN dataset demonstrated a decrease in performance on the ResNet50 under the same
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conditions used for CIFAR-10, but with SVHN-specific policies from the AutoAugment paper, the
network achieved a 6.45% error rate with AutoAugment, as opposed to an 8.85% error rate with
Color-Spatial AutoAugment.

Our approach was also tested using a Supervised Classification learning network, specifically
WideResNet 28-10. Here, Color-Spatial AutoAugment achieved a 2.76% error rate, outperforming
AutoAugment, which had a 3.09% error rate. These tests were conducted on the CIFAR-10 dataset
over 320 epochs.

2. Related Work

Over recent years, numerous studies have explored the efficiency of augmentation tech- niques in
image classification tasks across widely recognized datasets like CIFAR-10, CIFAR-100, MNIST,
and ImageNet. One notable study by Krizhevsky et al. (2012)[15] introduced data augmentation as
an effective strategy for training deep convolutional neural networks (CNNs). This approach
utilized straightforward transformation tech- niques, including random cropping, horizontal
flipping, and random alterations of RGB channels, markedly enhancing the CNN models’
generalization capabilities on ImageNet.

Simonyan and Zisserman (2014)[24] introduced the now widely adopted VGGNet architecture,
demonstrating that data augmentation, combined with a deeper CNN architecture, could yield state-
of-the-art results on ImageNet. The study by He et al.

(2016)[11] presented the ResNet architecture, further underscoring the significance of data
augmentation in effectively training very deep neural networks.

Justin Lemley, Saeid Bazrafkan, and Peter Corcoran introduced a technique termed Smart
Augmentation[16], which enhances the performance of machine learning models by automatically
generating augmented data. This is achieved by merging samples from the same class within a
dataset.

Zhang et al. (2017)[29] introduced the “mixup” augmentation technique, a method that linearly
interpolates between pairs of training examples and their correspond- ing labels. This technique has
demonstrated enhanced robustness and improved generalization of models trained on the CIFAR-10
and CIFAR-100 datasets.

Cutout augmentation, introduced by DeVries and Taylor (2017)[8], also gained much attention as it
randomly masks out square regions of input images during train- ing, forcing the model to rely on
other informative regions. This technique has shown promising results on CIFAR-10, CIFAR-100,
and ImageNet datasets.

The Cutout augmentation technique, introduced by DeVries and Taylor (2017)[8], has also gained
much attention. It enhances training by randomly masking out square regions of input images,
compelling the model to focus on other informative regions. This method has shown promising
results on the CIFAR-10, CIFAR-100, and ImageNet datasets.

AutoAugment, introduced by Cubuk et al. (2019)[4], utilizes a search algorithm to automatically
identify optimal augmentation policies, achieving state-of-the-art results on the CIFAR-10 and
ImageNet datasets through effective transformation com- binations. Subsequent advancements
include "RandAugment,” proposed by Cubuk et al.[5], simplifying the augmentation process by
applying random transformations directly to training data. This approach matched or surpassed the
performance of the original AutoAugment but also significantly decreased the computational
resources required to discover effective augmentation policies.

TrivialAugment, introduced by Samuel G. Mu“ller and Frank Hutter (2021)[17], applies a simple
approach to image augmentation. Unlike other methods that search for the best combination of
augmentations and parameters, TrivialAugment randomly applies an augmentation operation to
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each input image during training. This random selection is made from a predefined set of
augmentation operations, such as rotation, translation, shearing, or color adjustments. Each
operation is applied with a randomly chosen magnitude, ensuring a diverse set of augmented
images.

Chenyu Zheng, Guogiang Wu, and Chongxuan Li (2023)[30] explored using genera- tive models to
augment data for machine learning tasks. Generative data augmentation involves creating synthetic
data using models such as Generative Adversarial Networks (GANSs)[9] and Variational
Autoencoders (VAES)[13]. The effectiveness of generative augmentation depends on the quality of
the generated data. Poorly generated samples can mislead the training process, resulting in degraded
model performance. Training generative models, especially GANSs, is computationally intensive and
requires signif- icant resources. The paper calls for further research to address the limitations and
optimize generative data augmentation in practical applications.

3. Color-Spatial AutoAugment

Color-Spatial AutoAugment represents our proposed approach to applying the policies discovered
by AutoAugment[4]. The core concept of AutoAugment revolves around employing a search
algorithm to identify the best combinations of data augmentation transformations within a
predefined search space.

In the original AutoAugment framework, the authors used a reinforcement learn- ing algorithm to
search for the most effective augmentation policies. The search space was defined to include a
variety of predefined sets of transformations, such as rota- tions, translations, shears, flips, and color
changes. The algorithm explored various combinations of these transformations to discover policies
that enhance performance on the target dataset. In our Color-Spatial AutoAugment approach, we
want to force each policy to include at least one color transformation and one spatial transformation.
Figures Figure 1 and Figure 2 illustrate the distinct batches of both augmentation methods applied
to the first image in the ’Cat” category of the CIFAR-10 dataset.

Criginal Image Augmention 1 Augmention 2 Augmention 3
— - —

Augmention 4 Augmention 5
ot

Batch 1

Batch 2

Batch 3

Fig. 1. A different set of batches illustrates the successful policies discovered by AutoAugment
on CIFAR-10, applied randomly to each batch.

The policies discovered by AutoAugment [4] consisted of two or three sub-policies, each including
two augmentation operations. These policies specify the sequence in which augmentation
operations are applied to each training image, thereby generating an augmented version of that
image. Each operation within the policy is associated with specific hyperparameters, such as the
magnitude of the transformation, to guide the augmentation process effectively.

Color-Spatial AutoAugment organizes all discovered augmentation operations into two distinct
categories: color and spatial. These categories include unique augmen- tation operations without
repetition, as shown in Table Al and Table A2. When augmentation operations share the same
hyperparameters, only one is utilized in Color-Spatial AutoAugment to ensure diversity and
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efficiency in the augmentation process.

Augmentations that modify the image’s color, such as Posterize, Solarize, Contrast, Sharpness,
Brightness, Equalize, and Invert, are classified under the color category. On the contrary,
augmentations that alter the image’s spatial orientation, such as ShearX,

Ongmal Image Augmentlon 1 Augmention 2 Augmention 3 Augmention 4 Augmention 5

Batch 1
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Fig. 2. A different set of batches demonstrates the random augmentations applied by Color-

Spatial AutoAugment to the same image, utilizing one color and one spatial augmentation.
The image used is the first in the ”Cat” category of the CIFAR-10 dataset.

ShearY, TranslateX, TranslateY, Rotate, and Flip, are categorized under the spatial category.

When invoking the method to augment an image, users can select the number of augmentations to
apply from each category. In our study, most tests involved apply- ing one color and one spatial
augmentation, as shown in Figure 2. A random set of augmentation operations was chosen to
generate an augmented version of the image, ensuring variability in the augmentation process.

4. Results

Initial testing was conducted using a self-supervised learning approach, employing the SIMCLR [3]
methodology on a ResNet18 [11] architecture, paired with the InfoNCE

[19] loss function set at a temperature of 0.20. The chosen optimizer was SGD [2], con- figured
with a cosine annealing learning rate strategy starting at 0.01 and decreasing to a minimum of 1le-8,
a momentum of 0.9, and a weight decay of 1e-4.

The training was conducted on an RTX 2080Ti, accumulating approximately 2000 GPU hours. All
networks used a batch size of 64. The ResNetl8 network underwent training for 300 epochs,
followed by a validation phase on the same network architec- ture, with a linear classifier as the last
layer for 100 epochs. Validation was carried out using 100% of the labels.

4.1. CIFAR-10 Results
4.1.1. Self-Supervised learning Results

The ResNet18 network, when augmented with Color-Spatial AutoAugment, achieved a top-1
accuracy of 82.49% on CIFAR-10, marking a 5.01% improvement over AutoAug- ment.
Furthermore, Color-Spatial AutoAugment demonstrated a substantial 24.98% enhancement in
performance compared to the network trained with a standard aug- mentation methodology, which
includes random crop, random horizontal flip, random color jitter, random rotations, and random
shear.

While the WideResNet 28-10 [28] was trained for 300 epochs as well, Color-Spatial AutoAugment
achieved a top-1 accuracy of 82.13%, indicating a 3.06% improvement over AutoAugment. The
various networks and their corresponding results for CIFAR- 10 are detailed in Table 1, showcasing
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the performance comparison.

Table 1. The table shows the accuracy of both AutoAugment and Color-Spatial AutoAugment
on the different networks; for the ResNet50, we Show the accuracy for both 300 epochs and

1000.
Epochs Network AA CS-AA
ResNet18 77.48 82.49
300 ResNet50 79.51 85.74
WideResNet 28-10 79.01 82.13
1000 ResNet50 85.56 91.1

Afterward, we adopted the learning rate recommendation from the SimCLR paper, outlined

botch size_
explicitly in sections B.6 and B.7 [3], which suggests the learning rate equation Ir = 0.1 256
Therefore, with a batch size of 64, we employed a learning rate of

0.025 for our subsequent Self-Supervised learning experiments.
0.025 for our subsequent Self-Supervised learning experiments.

The ResNet50 network underwent training and testing for 300, 600, and 1000 epochs, with each
phase followed by 100 epochs of validation on 100% of the labels. Across all tests, Color-Spatial
AutoAugment demonstrated improvements over AutoAugment. Specifically, at 1000 epochs,
Color-Spatial AutoAugment achieved a top-1 accuracy of 91.1%, marking a 5.54% enhancement
compared to AutoAugment. Figure 3 presents the validation results for both augmentation methods.
Furthermore, Figure 4 illustrates the loss metrics for each method on the ResNet50 network, where,
at the 1000th epoch, Color-Spatial AutoAugment recorded a loss of 0.6383, in contrast to
AutoAugment’s 0.7019.
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Fig. 3. The top-1 accuracy of both augmentation methods was evaluated using ResNet50 as the
backbone. Validation was performed on 100% of the CIFAR-10 test dataset labels, following
the network’s training for 1000 epochs.
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Fig. 4. The loss metrics for both augmentation methods, applied on the ResNet50 architecture

over 1000 epochs, for the CIFAR-10 dataset.

4.1.2. Supervised learning Results

Supervised classification learning was conducted on the CIFAR-10 dataset using a WideResNet 28-
10, with and without the implementation of Cutout[8], as shown in Table 2. The training utilized a
learning rate of 0.1, a weight decay of 5e-4, a momentum of 0.9, and a gamma of 0.2. The learning
rate scheduler employed was MultiStepLR, with milestones set at (20,60,120,160,220,260) epochs,

and the network was trained for 320 epochs.

Using Color-Spatial AutoAugment, the network achieved an error rate of 3.17%, compared to
AutoAugment’s 3.31% without Cutout. However, with the inclusion of Cutout, Color-Spatial
AutoAugment further reduced the error rate to 2.76%. In Figure 5 and Figure 6, we can observe the
accuracy and loss metrics throughout the 320 training epochs for both augmentation methods.
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Fig. 5. The accuracy of the supervised training using WideResNet 28-10 as the backbone
network for both augmentation methods on the CIFAR-10 dataset, following the network

training for 320 epochs.
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Fig. 6. The loss metrics of the supervised training using WideResNet 28-10 as the backbone
network for both augmentation methods on the CIFAR-10 dataset, following the network
training for 320 epochs.

Table 2. The error rates of the supervised training on CIFAR-10, using WideResNet 28-10 as
the backbone network, for both AutoAugment and Color-Spatial AutoAugment methods,
with and without the application of Cutout.

Model Error Rate Loss

Baseline 3.82 0.1576

Cutout 3.40 0.1280

AutoAugment 3.31 0.1241

Cutout + AutoAugment 3.09 0.1106

CS-AutoAugment 3.17 0.1161
Cutout + CS-

AutoAugment 2.76 0.0977

4.2. CIFAR-100 Result
4.2.1. Self-Supervised learning Results

Given the similarities between CIFAR-10 and CIFAR-100, the same policies were applied to train
on CIFAR-100. Employing the ResNet18 network with identical settings to those used for CIFAR-
10, the network was trained for 300 epochs and underwent validation for 100 epochs. Using Color-
Spatial AutoAugment, the net- work achieved a top-1/top-5 accuracy of 48.69%/79.23%,
representing a 4.88%/4.47% improvement over AutoAugment.

While the WideResNet 28-10 was trained for 300 epochs as well, Color-Spatial AutoAugment
achieved a top-1/top-5 accuracy of 50.56%/81.13%, indicating a 2.75%/2.19% improvement over
AutoAugment. The various networks and their corre- sponding results for CIFAR- 100 are detailed
in Table 3, showcasing the performance comparison.

The ResNet50 network underwent training for 1000 epochs, followed by 100 epochs of validation
on 100% of the labels. Color-Spatial AutoAugment achieved a top- 1/top-5 accuracy of
60%/86.41%, marking a 7.05%/4.65% enhancement compared to AutoAugment. ?? presents the
validation results for both augmentation methods. And Figure 8 illustrates the loss metrics for each
method on the ResNet50 network.
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Table 3. The table presents the accuracy results of AutoAugment and Color-Spatial
AutoAugment across various network architectures when applied to the CIFAR-100 dataset.

Epochs Network AA CS-AA
ResNet18 43.81/74.76 48.69/79.23
300 WideResNet 28-10 47.81/78.94 50.56/81.13
1000 ResNet50 52.95/81.76 60.00/86.41
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Fig. 7. The top-1 accuracy of both augmentation methods was evaluated using ResNet50 as the
backbone. Validation was performed on 100% of the labels from the CIFAR-100 test dataset,

following the network’s training for 1000 epochs.

4.2.2. Supervised learning Results

Supervised Classification learning was conducted on the CIFAR-100 Dataset using a WideResNet
28-10; a learning rate of 0.1 was employed, weight decay of 5e-4, momen- tum of 0.9, and gamma
of 0.2. The learning rate scheduler was a MultiStepLR with a milestone of (20,60,120,160) epochs
and trained for 200 epochs. While using Color- Spatial AutoAugment, the network achieved an
error rate of 17.87% while using Cutout compared to AutoAugment with 17.88% with the same
conditions. In Figure 9 and Figure 10, we can observe the accuracy and loss of the training cycle

over the 200 epochs for both augmentation methods.

Supervised classification learning was executed on the CIFAR-100 dataset using a WideResNet 28-
10 architecture. A learning rate of 0.1, weight decay of 5e-4, momen- tum of 0.9, and gamma of 0.2.
The learning rate scheduler used was MultiStepLR with milestones at (20,60,120,160) epochs, and
the network was trained for 200 epochs. While using Color-Spatial AutoAugment with Cutout, the

network achieved an error
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Fig. 8. The loss metrics for both augmentation methods, applied on the ResNet50 architecture

over 1000 epochs, for the CIFAR-100 dataset.

rate of 17.87%, a slight improvement compared to AutoAugment’s 17.88% under iden- tical
conditions. Figure 9 and Figure 10 show the accuracy and loss metrics throughout the 200-epoch

training cycle for both augmentation methods.
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Fig. 9. The accuracy of the supervised training on CIFAR-100, using WideResNet 28-10 as the
backbone network, for both augmentation methods after 200 training epochs.

4.3. SVHN Result
4.3.1. Self-Supervised learning Results

The SVHN (Street View House Numbers)[18] Dataset was tested on the ResNet50 for 1000 epochs.
With the same parameters used for CIFAR-10 on the ResNet50 network, Color-Spatial
AutoAugment achieved 91.15%, falling behind AutoAugment by 2.4%. In Figure 11 and Figure 12
we can observe the accuracy and loss metrics throughout the 1000 training epochs for both

augmentation methods.
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Fig. 10. The loss metrics of the supervised training on CIFAR-100, using WideResNet 28-10 as
the backbone network, for both augmentation methods after 200 training epochs.
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Fig. 11. The top-1 accuracy of both augmentation methods was evaluated using ResNet50 as
the backbone. Validation was performed on 100% of the labels from the SVHN test dataset,
following the network’s training for 1000 epochs.

5. Discussion

In one of the self-supervised experiments on CIFAR-10 using ResNet50 as the backbone model, a
batch size of 32 and a learning rate of 0.0125 were used. This configuration achieved a top-1
accuracy of 90.92% after 1000 epochs. Notably, this result was 0.18% lower than our best result,
obtained with a batch size of 64 and a learning rate of 0.025. Therefore, further testing with larger
batch sizes, such as 512 or 1024, is recommended to evaluate the impact on performance.

The implementation was further tested on the Supervised Contrastive Learning network [12],
utilizing the CIFAR-10 dataset over 300 epochs with a cosine annealing learning rate set to 0.6 and
an SGD optimizer. Then, the validation was performed on a linear classifier for 50 epochs. Color-
Spatial AutoAugment achieved an accu- racy of 95.31%, slightly lower by 0.12%, compared to the
performance achieved with AutoAugment.
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Fig. 12. The loss metrics for both augmentation methods, applied on the ResNet50
architecture over 1000 epochs, for the SVHN dataset.

The accuracy of CIFAR-100 may be improved by extending the number of train- ing epochs. The
observations of the ResNet50 on both CIFAR-10 and CIFAR-100 showed significant accuracy
improvement when the network underwent training for 1000 epochs. Given the larger size and
complexity of CIFAR-100 and SVHN datasets, training for more epochs could be beneficial.
However, it is crucial to note that an increase in epochs does not always lead to better results; there
is a risk of overfitting, where the model’s performance will worsen beyond a certain point in the
training process.

The SVHN dataset performed a little worse with Color-Spatial AutoAugment than with
AutoAugment, but the limited testing conducted on this dataset makes these results not definitive.
Notably, for SVHN, the loss metric at the final epoch was 0.6110 using Color-Spatial
AutoAugment, compared to a slightly lower loss of 0.6011 with AutoAugment. This differs from
the results on CIFAR-10 and CIFAR-100, where Color-Spatial AutoAugment achieved lower loss
values than AutoAugment.

We are also exploring the potential of two colors and one spatial augmentation to determine their
effectiveness. Additionally, the possibility of applying Color-Spatial AutoAugment to other
datasets, such as MNIST and ImageNet, is under consideration.

6. Conclusion

A central finding of this research is that Color-Spatial AutoAugment consistently improved the
accuracy of various models, both in self-supervised and supervised learning settings. This was
particularly evident in the in-depth case study involving ResNet50 trained for 1000 epochs, where
Color-Spatial AutoAugment demonstrated superior performance to traditional AutoAugment and
basic augmentation methods. In self-supervised learning scenarios, Color-Spatial AutoAugment led
to the devel- opment of high-quality features, as evidenced by the improved performance of models
in downstream tasks. This underscores the potential of Color-Spatial AutoAugment in enhancing
the feature representation capabilities of neural networks.

The research highlighted the significance of a balanced augmentation approach. By integrating
color and spatial transformations, Color-Spatial AutoAugment pro- vided a comprehensive
augmentation strategy that improved learning dynamics and generalization.
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Appendix A The Policies used in Color-Spatial AutoAugment
A.l. CIFAR

Table Al. Color-Spatial AutoAugment policies used in training both CIFAR-10 and CIFAR-100.
One of the Color sub-policies and one of the Spatial sub-policies selected at random.

Color Spatial

factor’: color, "value': (0.4, 3) ‘factor”: shear-y, "value': (0.5, B}
factor’: color, "value': (0.7, 7) ‘factor”: shear-y, "value': (0.2, 7)
factor’: color, "value’: (0.9, 9) ‘factor’: translate-x, “value’: (0.3, 9}
factor’: color, "value’: (0.2, B) ‘factor’: translate-x, ‘value’: (0.5, B)
factor’: color, "value’: [0.7, 0} ‘factor’: translate-y, "value': (0.7, §)
‘factor’: brightness, *value’: (0.6, 7) ‘factor’: translate-y, ‘value’: (0.4, 3}
factor’: brightness, ‘value’: (0.7, 5) ‘factor’: translate-y, “value’: (0.9, )
factor’: brightness, 'value’: (0.9, &) ‘factor’: rotate, ‘value': (0.7, 2}

factor’: brightness, "value’: (0.1, 3)
factor’: contrast, ‘value™ (0.2, 6)
factor’: contrast, "value’: (0.6, 7)
factor’: auto—contrast, 'value’: (0.5, B)
‘factor’: autocontrast, 'value': (0.4, 8}
factor’: autocontrast, 'value’: (0.6, 0}
factor’: autocontrast, 'value”: (0.8, 4)
factor’: autocontrast, 'value’: (0.9, 3)
factor’: autocontrast, 'value': (0.9, 2}
factor’: auto_contrast, 'value': (0.9, 1}
factor’: invert, ‘value’: (0.1, 7)
factor’: invert, ‘value’: (0.0, 3]
factor’: invert, ‘value’: (0.1, 3)
factor': egualize, ‘value’: (0.9, 2)
factor’: equalize, "value’: (0.6, 5)
factor’: egualize, "value’: (0.5, 1)
factor': eqgualize, ‘value’: (0.3, 7)
factor': egualize, ‘value’: (0.2, 0)
factor’: egualize, "value’: (0.6, 4)
factor’: egualize, "value’: (0.6, &)
factor': egualize, ‘value’: (0.8, B)
factor’: solarize, 'value’: (0.5, 2]
factor’: solarize, 'value’: (0.2, 8]
factor’: solarize, ‘value’: (0.4, 5)
factor’: solarize, ‘value’: (0.8, 3)
factor’: posterize, "value': (0.3, 7)
factor': sharpness, 'value®: {0.8, 1]
factor': sharpness, ‘value’: {0.9, 3]
factor’: sharpness, "value’: (0.3, 9)
factor’: sharpness, "value’: (0.6, 5)
factor': sharpness, ‘value’: {0.2, 5]
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A.2. SVHN

Table A2. Color-Spatial AutoAugment policies used in the training of SVHN. One of the Color
sub-policies and one of the Spatial sub-policies selected at random.

Color Spatial

factor’: invert, ‘value’: (0.2, 3) factor’: shear_x, "value': (0.9, 4)
"factor’: invert, "value”: (0.7, 5) factor’: shear-x, "value’: (0.7, 9)
*factor’: invert, "value”: (0.9, 3) factor’: shear_x, ‘value': (0.7, 2)
"factor’: invert, "value”: (0.4, 5) factor’: shear_x, "value': (0.1, 6)
factor’: invert, ‘value’: (0.9, B) factor’: shear_y, 'value’: (0.7, 6)
factor': invert, ‘value’: (0.7, 4) factor’: shear—y, 'value’: (0.9, 8)
Yfactor’: invert, “value’: (0.9, 4) factor’: shear_y, "value’: (0.9, 5)
factor’: invert, ‘value’: (0.8, 5) factor’: shear—y, 'value’: (0.8, 8)
factor’: invert, “value’: (0.6, 4) factor’: shear_y, "value’: (0.3, 7)
factor': invert, ‘value’: (0.6, 5) factor’: shear—y, 'value’: (0.8, 5)
factor’: invert, ‘value’: (0.8, 8) factor’: shear_y, 'value’: (0.8, 4)
factor’: invert, “value’: (0.1, 5) factor’: translate_x, ‘value’: (0.9, 3)
*factor’: solarize, ‘value’: (0.6, &) factor': translate_y, ‘value’: (0.6, 7)
*factor’: solarize, ‘value’: (0.2, &) factor': translate-y, ‘value’: (0.8, 3)
factor’: auto_contrast, "value’: (0.8, 3) factor’: translate_y, "value': (0.0, 2)
*factor’: auto_contrast, "value’: (0.7, 3) factor': translate-y, ‘value’: (0.6, &)

Yfactor': auto_contrast, 'value’: (0.8, 1)
"factor’: equalize, ‘value’: (0.6, 3)
*factor’: equalize, 'value”: (0.9, 5
"factor’: equalize, 'value’: (0.6, 7
*factor’: equalize, 'value”: (0.6, 5
factor’: equalize, 'value’: (0.6, 1
Yfactor’: contrast, ‘value’: (0.3, 3)
factor’: rotate, ‘value’: (0.8, 4)
factor’: rotate, ‘value’: (0.9, 3)
*factor’: solarize, ‘value’: (0.4, 8)
*factor’: solarize, ‘value’: (0.7, 2)
Yfactor': solarize, 'value': (0.3, 3)

)
)
)
)
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