

An In-Depth Assessment of the Fatigue Life of the Different Blade Materials under Varied Conditions: Identifying their Reliability and Durability

Uchechukwu Richard Olisedeme, Oluchukwu Richmond Olisedeme

Department of Mechanical Engineering, Glasgow Caledonian University, United Kingdom

Abstract:

The study assessed the fatigue life of the different blade materials under varied conditions to identify the most durable and reliable material. The research approach adopted for this study is a combination of a comprehensive literature review and a rigorous computational analysis using Finite Element Analysis (FEA). Finite Element Analysis (FEA) is a computer-aided engineering (CAE) tool employed to simulate the physical behavior of structures and materials. This tool allows for detailed analysis under a multitude of conditions, including various types of loading and environmental stresses. The first step in the FEA-based structural analysis is to develop a model of the wind turbine blade. Structural loads on wind turbine blades primarily consist of gravitational, aerodynamic, and centrifugal forces. Environmental conditions play a pivotal role in the performance and durability of wind turbine blades. The analysis procedure will be an iterative process that employs Finite Element Analysis (FEA) methods for structural evaluation. The chosen approach, involving Finite Element Analysis (FEA), is justified due to its proven effectiveness in predicting the structural response of complex structures such as wind turbine blades under varying loading conditions. While the Finite Element Analysis (FEA) approach is a powerful tool for modeling and analyzing the structural behavior of wind turbine blades, it comes with some limitations. To minimize these limitations, the model will be validated against experimental data, and a sensitivity analysis will be performed to assess the impact of the different parameters on the results. The study found out that wind turbine blades are paramount components, directly influencing the efficiency and longevity of the turbine. The choice of material for these blades is a critical decision, influenced by various factors such as longevity, cost, durability, efficiency, and more. It was concluded that for small-scale onshore wind turbine projects, where budget considerations weigh more heavily, alternatives like Pine and Bamboo come to the fore. These materials, while not matching CFRP's mechanical performance, offer their unique set of

sustainability advantages. Pine, widely available in the UK and other regions, aligns with cost-effectiveness, reducing production expenses. One of the recommendations made was that educational campaigns should be launched to raise awareness about the importance of sustainable wind energy. Engage communities and stakeholders in sustainable practices.

Keywords: Fatigue Life, Different Blade Materials, Reliability and Durability.

Introduction

The choice of materials for wind turbine blades has evolved over time, from wood and metal in the early stages to advanced composite materials in modern turbines. These composite materials, particularly carbon fiber and fiberglass, offer advantages like high strength-to-weight ratios, improved fatigue resistance, and adaptability to different designs and sizes. Furthermore, the material choice for these blades significantly influences their resilience and efficiency in energy conversion (Veers et al., 2004). Hence, a careful analysis and selection of blade material can greatly enhance the turbine's performance and longevity, contributing to the broader goal of sustainable energy production.

However, the decision to select an ideal material for turbine blades is complex and multifaceted. Multiple factors such as weight, strength, durability, cost, and environmental impact need to be weighed (Paquette et al., 2007). This material complexity of wind turbine blades necessitates advanced modeling techniques capable of accurately predicting their behavior under varying loading conditions. Finite Element Analysis (FEA) has emerged as a crucial tool in this respect. FEA is a numerical method that enables the analysis of complex structures under different loading conditions by breaking them down into smaller, simpler elements. This method allows for accurate predictions of stress distribution, deformation, and potential failure modes, thereby facilitating the design and material optimization of wind turbine blades (Mishnaevsky et al., 2017). FEA enables engineers to model the structural response of wind turbine blades to the multitude of forces they are subjected to, identifying potential weak points and enabling proactive, predictive maintenance (Masters et al., 2015). By applying FEA, engineers can simulate the behavior of different materials under expected load conditions, leading to an optimized choice for enhanced performance and durability. However, despite its significant potential, the application of FEA in wind turbine blade analysis and design is still under-explored. While some studies have used FEA to analyze specific aspects of wind turbine blade design, other various studies have focused on individual aspects such as load analysis, fatigue life, or material selection, a holistic, Finite Element Analysis (FEA)-based study that integrates all these aspects is notably lacking (Song et al., 2022; Chen et al., 2019). This study, therefore, seeks to address this gap in the literature by conducting a comprehensive FEA-based structural analysis of wind turbine blades to identify an optimal material that maximizes performance, durability, and efficiency.

The implementation of FEA allows for a detailed examination of the behavior of materials under different load conditions, providing valuable insights into the mechanical properties and performance of the materials used for turbine blades (Mishnaevsky Jr et al., 2007). By considering multiple performance parameters and environmental factors, this study strives to generate data-driven insights that may enhance the efficiency of wind turbines, advancing the global sustainability agenda.

Statement of Problem

Wind turbine blades, crucial for efficient energy production, are exposed to various structural loads and environmental conditions. This exposure can lead to fatigue damage, influencing the performance and lifespan of these blades. The choice of blade material plays a pivotal role in

managing these challenges. However, despite significant research in this area, a comprehensive FEA-based study integrating load analysis, fatigue life, and material selection is noticeably absent.

Research Objective

1. Conduct an in-depth assessment of the fatigue life of the different blade materials under varied conditions to identify the most durable and reliable material.

Research Questions

1. The research question guiding this study is: "What is the ideal material for wind turbine blades that optimizes performance, durability, and efficiency under various structural loads and environmental conditions, while adhering to the BS EN 61400 UK standard?"

CONCEPTUAL REVIEW

Materials Used in Blade Design

Wind turbine blades are paramount components, directly influencing the efficiency and longevity of the turbine. The choice of material for these blades is a critical decision, influenced by various factors such as longevity, cost, durability, efficiency, and more. This literature review delves into various materials that have been employed in blade design, their attributes, and potential gaps in existing knowledge.

1. Glass Fibre Reinforced Polymer (GFRP) in Wind Turbine Blades

Glass Fibre Reinforced Polymer (GFRP), often referred to simply as fiberglass, has become a predominant choice for wind turbine blade fabrication. Its ubiquity in the industry can be attributed to several intrinsic properties.

GFRP is a composite material made by embedding glass fibres in a polymer matrix. This integration offers an impressive strength-to-weight ratio, a property vital for the dynamic loading conditions faced by wind turbines (Liu et al., 2012). One of the hallmark features of GFRP is its remarkable fatigue resistance, making it apt for long-term exposure to repetitive wind loads. Moreover, it possesses good durability against environmental factors, ensuring reduced maintenance needs for blades in diverse climatic zones (MishnaevskyJr et al., 2017).

Cost-effectiveness is another compelling argument for GFRP's popularity. While providing good mechanical strength, GFRP remains less expensive than materials like Carbon Fibre Reinforced Polymer (CFRP), making it a suitable choice for a wide spectrum of turbine sizes (Zhou et al., 2016).

However, as with every material, GFRP isn't without its limitations. The weight can become a constraining factor when designing larger blades, prompting manufacturers to seek hybrid solutions or alternative materials.

2. Carbon Fibre Reinforced Polymer (CFRP) in Wind Turbine Blades

Carbon Fibre Reinforced Polymer (CFRP) represents the next frontier in wind turbine blade materials. Boasting a strength-to-weight ratio superior to that of GFRP, CFRP is increasingly utilized, especially in large-scale turbine blades where material weight becomes critically influential (Smith et al., 2013). The carbon fibres confer incredible tensile strength, enabling the design of longer blades with improved aerodynamic efficiency. Furthermore, the material's enhanced stiffness helps in reducing blade deflections, thus minimizing tower strikes in high wind conditions (Petersen et al., 2015). However, these benefits come at a price; CFRP is significantly costlier than GFRP. Its application is typically justified only where the performance gains outweigh the increased material costs. While promising, widespread adoption of CFRP demands cost-effective manufacturing techniques and lifecycle considerations (Schubel&Crossley, 2012).

3. Metals and Alloys (Steel and Aluminium) in Wind Turbine Blades

Steel and aluminium are metals that have been historically essential in wind energy technology. Steel, with its excellent strength and fatigue properties, has been extensively used in the wind turbine towers and foundations (Tavner, 2012). However, its application in the blades is less common, mainly because of its weight. The significant mass of steel is a critical drawback in blade design as it increases the load on the turbine structure and reduces the overall efficiency (MishnaevskyJr et al., 2017).

Aluminium, on the other hand, has a better strength-to-weight ratio than steel, making it more favourable for certain components of the blade, such as the spar cap or the internal structure (Manwell et al., 2010). Yet, its application is still limited due to its relatively high cost and susceptibility to fatigue, a significant concern for wind turbine blades constantly under cyclic loads.

4. Bio-based Materials (Flax and Jute) in Wind Turbine Blades

Bio-based materials like flax and jute represent a recent, eco-friendly innovation in wind turbine blade design. Flax and jute fibres are increasingly being considered as alternatives to glass and carbon fibres due to their comparable mechanical properties, lower density, and lower environmental impact (Shah, 2013). For instance, flax fibres exhibit a tensile strength close to that of glass fibres, and yet, they are 30% lighter (Le Duigou et al., 2014).

Another key advantage of flax and jute fibres is their positive environmental profile. They are biodegradable, renewable, and require less energy to produce compared to glass and carbon fibres (Charlet et al., 2017). However, their hydrophilic nature presents challenges, like moisture absorption, that can lead to a decrease in mechanical properties over time. Additionally, the lower stiffness compared to carbon fibres limits their application in larger blades. Thus, while promising, flax and jute fibres are currently more suitable for small to medium-sized blades.

5. Wood Epoxy and Bamboo in Wind Turbine Blades

Wood epoxy and bamboo are emerging as innovative materials for wind turbine blade design. These bio-based materials are drawing attention due to their renewability, low cost, and relatively low environmental impact (Khan & Savi, 2020). Wood epoxy composites, composed of wood fibres embedded in an epoxy matrix, are not only renewable but exhibit good mechanical properties, including high strength and stiffness, which are crucial for wind turbine blade performance (Li et al., 2019; John & Anandjiwala, 2008). Similarly, bamboo, a natural composite with a high strength-to-weight ratio, offers good structural properties and resistance to fatigue loads (Lopez et al., 2017). The use of wood epoxy and bamboo presents several advantages. They are low cost and have a lower environmental impact compared to conventional materials like glass and carbon fibres (Breton & Moe, 2009). Furthermore, they are readily available and can be sourced sustainably. However, there are also limitations. These materials have a higher density compared to conventional composites, which could lead to heavier blades. Additionally, the variability in natural materials may lead to inconsistencies in material properties (Kusiak & Zastrozny, 2019; John & Anandjiwala, 2008).

Despite these limitations, the extensive literature review and in-depth understanding of the current state of research suggest that wood epoxy and bamboo could offer a viable and sustainable alternative for wind turbine blade design, warranting further investigation in this dissertation work.

Methodology

The research approach adopted for this study is a combination of a comprehensive literature review and a rigorous computational analysis using Finite Element Analysis (FEA). Finite Element Analysis (FEA) is a computer-aided engineering (CAE) tool employed to simulate the physical behavior of structures and materials. This tool allows for detailed analysis under a multitude of

conditions, including various types of loading and environmental stresses. The first step in the FEA-based structural analysis is to develop a model of the wind turbine blade. Structural loads on wind turbine blades primarily consist of gravitational, aerodynamic, and centrifugal forces. Environmental conditions play a pivotal role in the performance and durability of wind turbine blades. The analysis procedure will be an iterative process that employs Finite Element Analysis (FEA) methods for structural evaluation. The chosen approach, involving Finite Element Analysis (FEA), is justified due to its proven effectiveness in predicting the structural response of complex structures such as wind turbine blades under varying loading conditions. While the Finite Element Analysis (FEA) approach is a powerful tool for modeling and analyzing the structural behavior of wind turbine blades, it comes with some limitations. To minimize these limitations, the model will be validated against experimental data, and a sensitivity analysis will be performed to assess the impact of the different parameters on the results.

Results and Discussions

Material Modelling for Finite Element Analysis

In the next twenty years, the majority of wind turbine blades that end up in the waste stream will come from operating turbines. With a 20-year lifespan, many of the blades that are currently in use in the UK will be retired by 2050. Although fewer blades are expected to be retired after 2050, the average size of those retiring blades will still be greater than that of blades that are currently nearing the end of their useful life. Although the current wind turbine blade material system has strong mechanical qualities, it is not biodegradable, which has a negative impact on the environment. Because wind energy is becoming more and more popular, there are more wind turbines in the world, which has led to a major problem with trash disposal because the material is not biodegradable. In 2012, R. Cherrington and colleagues talked about the producer's obligation to dispose of wind turbine blade trash. Finding an alternative end-of-life path is necessary since land-filled waste disposal is no longer acceptable due to the high organic content in the blade, which poses a risk to the environment. Finding a recyclable material system is a better way to solve this problem, according to the study. In this closed loop, we will use Finite Element Analysis to examine which of the materials listed below is the best fit and how different forces acting on the material assigned blade and the environment affect these materials. Additionally, we will talk about how, at the conclusion of this project, we want to recover the fibres and convert them into new blades.

With great consideration, the materials used for this investigation have low density, high strength, fatigue resistance, and damage tolerance. The high strength to weight ratio of these materials is one of its essential characteristics (Mishnaevsky et al., 2017). Aluminium 2024-T4 (AL 2024), Epoxy Carbon UD prepreg (CFRP), Epoxy E-Glass UD (GFRP), Aramid Fibre, Bamboo, Pine, and Glulam are the materials employed in the current experiment. Below is a representation of these materials' characteristics.

Table 1: Selected Material Properties.

Materials	Density (Kg/m ³)	Young Modulus (N/m ²)	Poison Ratio	Ultimate Tensile Strength (N/m ²)	Cost (£/Kg)	Recyclable/Downside	Moisture Absorption
AL(2024)	2924.9	1.23e11	0.32	5.99e8	265	Yes/Yes	No
CRFP	1564.9	1.41e11	0.33	1.94e9	31.2	Limited/Yes	No
GRFP	1766.4	3.97e11	0.14	5.47e8	25.8	Limited/Yes	
BAMBOO	692.82	1.73e10	0.38	2.26e8	1.5	Yes/Yes	Yes
ARAMID F.	1380	6.93e10	0.34	1.23e9	59.1	Limited/Yes	Yes
PINE	656.28	1.49e10	0.37	9.29e7	1.01	Yes/Yes	Yes
GLULAM	570	1.29e10	0.27	1.09e7	1.9	Yes/Yes	Yes

The challenge for a blade designer is to find a suitable material for wind turbine blade, which possess both performance and weight reduction with cost effectiveness. Advanced material system with high specific mechanical property, eco-friendly, bio-degradable characteristics are reviewed and its pros and cons are explained in the upcoming sections.

i. Epoxy Carbon UD prepreg (CFRP) and Epoxy E-Glass UD (GFRP)

The stiffness of the fibres and their volume content determine the stiffness of composite materials. Usually, the primary reinforcement in composites is made of E-glass fibres, which are borosilicate glass known as "electric glass" or "E-glass" due to its high electric resistance. The stiffness, tensile, and compression strength of UD composites increase proportionately with an increase in fibre volume content. However, at high fibre volume contents (beyond 65%), there may be dry areas between the fibres without resin, and the composite's fatigue strength decreases (Mishnaevsky and Brøndsted, 2019). For wind blades, glass/epoxy composites typically contain up to 75% glass by weight. Numerous studies have been conducted in an effort to create fibres that are stronger than the typical E-glass fibres. High strength fibres, such as basalt, aramid, carbon, and glass fibres with changed compositions (S-glass, R-glass, etc.), are currently rarely employed in practise but show great promise for improving composite materials. Developed in the 1960s, S-glass, also known as high strength glass (the letter S stands for "Strength" in this context), exhibits 40% greater tensile and flexural strengths as well as 10-15% higher compressive strength and flexural modulus when compared to E-glass. It costs a lot more money to purchase S-glass than E-glass. In 1968, S2-glass was created as a commercial variant of S-glass. The composition of S glass and S2 glass fibres is the same—magnesium alumino-silicate. The certification process and sizing (fibre coating) are where the biggest distinctions lie. S2-glass costs around ten times as much as E-glass. Introduced in 1968, R-Glass fibres are made of a calcium aluminosilicate glass that has more oxides and less silica (Fecko, 2006). Other unique glasses that Owens Corning has created include Advantex, ECRGLAS, and most recently, WindStrand™ glass fibres. When compared to E-glass, the WindStrand™ glass fibres exhibit up to 30% stronger strength and 15% higher stiffness (Ashwil, 2009). When compared to glass fibres, carbon fibres are seen to be a very promising substitute. The thinner, stiffer, and lighter blades are made possible by their significantly better stiffness and lower density compared to glass fibres. Granted, they are significantly more costly than E glass fibres and possess comparatively lower damage tolerance, compressive strength, and ultimate strain (Grand, 2008; <https://infogr.am/carbon-fiber-vs-fiberglass>). The waviness and misalignment of the fibres can greatly reduce the compressive and fatigue strengths of carbon fibre reinforced composites, even in minor cases. The businesses Vestas (Denmark) and Siemens Gamesa (Spain) utilise carbon fibre composites, frequently in the structural spar caps of large blades (Grand, 2008). These businesses dominate the UK market for wind turbine blade manufacturing.

ii. Bamboo

Bamboo has a high lignin content and 60% cellulose content, which makes it a material with great potential for reinforcement in fiber-reinforced polymers. Bamboo fibres can be used as reinforcement in a variety of polymer matrices. When bamboo and wood veneer laminate were compared to birch and glass laminate in terms of mechanical properties, the results showed that the former had greater strength, fatigue life, and fracture resistance than the latter, and that these qualities were comparable to those of glass reinforced polymer laminate (Brøndsted, P. et al., 2019).

According to research by Thomas, L. and Ramachandra, M. (2018), particulate-filled bamboo reinforced polymer was shown to have less water absorption than unfilled bamboo reinforced polymer, and 30% of the bamboo in the laminate exhibited excellent mechanical properties. Yinyao Qin and colleagues (2009) conducted a study on the characteristics of bamboo materials and conducted a life cycle analysis to evaluate the differences in performance between glass fibre and bamboo turbine blades. The findings showed that bamboo material satisfied the needs for wind

turbine blades. The mechanical properties of coir fibre composite (tensile, impact, shear, flexural, and compression strength) were studied by Bakri et al. (2015). The findings showed that while the composite's qualities are close to those of wood, they are not as good as those of glass fibre composite. The results of the observed environmental influence on the coir fibre composite indicate that as weathering times increase, the mechanical properties of the coir fibre composite drop. A 3.5-meter-long flax fibre wind turbine blade made of 600GSM flax biaxial +/- 45° was produced by Nottingham University in the United Kingdom. According to Thomas and Ramachandra (2018), it was a true success because it passed the IEC61400 standard. When combined with a polymer, flax fibre has superior mechanical qualities and a higher specific strength when compared to other natural fibres (Spurnins, E., 2009). The impact of machining on flax fibre was examined by Nasir et al. (2015).

iii. Aramid Fibre

The synthetic fibre known as "aramid fibre" is a member of the aromatic polyamide family. strong toughness, strong tensile qualities, and greater chemical stability—even at high temperatures—are their exclusive advantages. Arimid fibre has special advantages that make it employed in the aerospace and automotive industries as a heat-preventing layer for combustion liners and as a friction material, respectively. When weighed equally, aramid fibre has five times the strength and eight times the traction resistance of steel. Despite being made of plastic, it can stop bullets travelling at a fast speed. Due to these benefits, aramid fibre finds use in a variety of applications, including sports, wind turbine blades, boats, brake pads, bowstrings, bulletproof materials, and aeronautics. [Zhang and others, 2021] In wind turbine blades, aramid fiber's great mechanical strength and chemical stability are used to handle fatigue and vibration loads under dynamic loading circumstances. Because aramid fibre has a higher strength, the wind blade's mass is reduced. The dynamic characteristics of the aramid fibre wind turbine blade will also be assessed in this work under various loading scenarios. In general, aramid fibre exhibits better mechanical qualities than nylon, glass fibre, and steel wire. Because of its extremely high initial elastic modulus, it is used in applications with large explicit dynamic loads. Up to 640 °C, the nylon maintains its strength at high temperatures; at 250 °C, it loses its mechanical strength.

iv. Pine

Finite Element Analysis (FEA) and wind turbine blade design may benefit greatly from the use of pine wood, especially Scots Pine (*Pinussylvestris*) variants (Smith et al., 2020). Because of its abundance in the UK, it is an especially economical and environmentally friendly option for a range of engineering applications, such as wind turbine blades (Jones, 2019).

Pine's accessibility locally in the UK results in material procurement costs being lowered, dependence on imported substitutes being decreased, and sustainability goals being in line (Green Engineering Report, 2021). Adopting sustainable forestry practises helps achieve environmental goals by ensuring a consistent and ethical supply of timber (UK Forestry Commission, 2018).

Thanks to its remarkable strength, pine wood is a great choice for engineering applications (Johnson & Brown, 2017). Its strength-to-weight ratio is nevertheless competitive even though it might not be as strong as some composite materials or exotic woods (Davis & White, 2018). Furthermore, pine wood is highly valued for its ease of machining, which streamlines production procedures and lowers related expenses (Turner & Grey, 2019).

v. Aluminum 2024-T4 (AL 2024)

High-strength aluminium alloy AL 2024-T4 (also known as AL 2024) is valued for its numerous technical applications because to its exceptional mechanical qualities and resistance to corrosion (Li et al., 2018). Within the framework of this FEA research and wind turbine blade design, AL 2024 is taken into consideration due of its distinct features. With a tensile strength of about 470 MPa (ASM

International, 2020), the alloy is a good choice for parts that must withstand heavy mechanical loads, like the blades of wind turbines.

The applications of AL 2024 go beyond wind power. Because of its lightweight and strong characteristics, it has been used in the aerospace industry, helping to maintain the structural integrity of aircraft components (ASM International, 2020). Its flexibility to aerospace applications emphasises how well-suited it is for wind turbine blades, which need materials that can survive harsh operating environments.

vi. Glulam

A composite material called glulam, or glued laminated wood, is created by adhering layers of solid timber boards together with strong adhesives. Because of its sustainability, adaptability, and structural integrity, it is valued in a wide range of engineering applications (Schweigler, 2018). The special qualities of glulam make it a consideration for FEA analysis and wind turbine blade design in offshore applications. Because of its remarkable tensile and compressive strength, glulam is a good material to use for parts that are subjected to heavy mechanical loads, like wind turbine blades (Schweigler, 2018). Although it isn't as strong as other more sophisticated composite materials, its specific strength is still competitive and depends on things like the type of wood used and the adhesive bonding quality (Forest Products Laboratory, 2010).

Glulam has been used in a variety of technical fields, such as construction and bridge building, in addition to wind energy. In these situations, it has proven its resilience to large loads and harsh weather conditions (Forest Products Laboratory, 2010). Its track record of resilience and structural soundness underscores its promise for offshore wind turbines, where the capacity to withstand challenging marine conditions is critical.

Finite Element Analysis

One tool for approximating the solution of a complicated system or geometry is the Finite Element Method. Often, it is very difficult or impossible to find the correct answer analytically for systems or geometries with numerous pieces, that exist in two or three dimensions, or that depend on time. Finite element analysis can therefore be utilised to produce an accurate approximation of the answer while saving time and money. The primary benefit of finite element analysis is its ability to analyse physical issues that were previously too complex and unsolvable for any closed form solution. The majority of commercial FEA software systems, such as ANSYS, ABACUS, NISA, ADINA, and STAAD, among others, offer the ability to analyse a wide range of problems, including thermal analysis, static and dynamic analyses with geometric and material nonlinearity, and more.

The ANSYS, 2022 programme was used to do the finite element analysis in the current work. The findings of a wind turbine blade's static structural study were discovered using the FEA method. After the blade's 3D model was loaded into ANSYS, fine meshing was carried out for the static structural analysis. This structural analysis is conducted with three boundary conditions. The blade revolves counter-clockwise around the hub, which has one end locked in place. According to Khazem's (2019) paper, the gust rotational velocity operating on wind turbine blades is 20.5 rad/s and rotates across the Y-axis. Among other things, this gust rotational speed was employed to analyse the static structure of each material blade up to an average angular velocity of 11.5 rad/s. Static structural elements are associated with the force exerted on the blade surface by wind loads, which are computed and derived from gust wind speeds of 25 m/s taken from the UK standard for wind turbine blade design (BS EN 61400). Mesh convergence investigation yields results with high mesh quality. The following formula can be used to determine the blade's centrifugal force. The analysis' findings are covered in more detail in later parts.

$$F = m \times r \times \omega^2 \text{eqn (41)}$$

Where;

F is the Centrifugal force in N

m is the Mass in kg

r is the distance from the rotor in meters (m)

ω is the angular speed in rad/s

Environmental Cases

Environmental conditions affecting wind turbine integrity encompass wind conditions and various climatic factors. Wind conditions determine structural integrity, with wind speed distribution defining load frequency. Extreme wind conditions, like peak or gust speeds during storms and rapid changes, impact load calculations. Environmental factors, including temperature, humidity, solar radiation, and corrosive agents, can also affect integrity. Chosen materials aligned with BSI standards to ensure safety and durability and these environmental factors were considered during their selection. For example, these materials need to withstand temperature variations, resist corrosion in a marine environment, and endure mechanical stresses caused by wind turbulence. Compliance with these standards ensured that the selected materials meet safety and performance criteria for wind turbine blades.

Durability Assessment

The durability assessment of wind turbine blade materials at an angular velocity of 20.5 radians/s is a crucial aspect of their performance evaluation. Durability directly impacts the lifespan and maintenance requirements of wind turbines, making it a key consideration for sustainable energy generation.

Looking at the results from Tables 4, 5, and 6, it's evident that different materials exhibit varying levels of durability under this high-stress operational condition.

Carbon Fiber Reinforced Polymer (CFRP) stands out as the most durable material in this assessment. It demonstrates the lowest deformation, stress, and the highest safety factor among all the materials tested. This indicates that CFRP can endure the rigors of high-speed operation without significant structural degradation. Its excellent durability is attributed to its inherent properties, such as high tensile strength, stiffness, and resistance to environmental factors like moisture and corrosion.

Aluminum 2024-T4 (AL 2024), while exhibiting relatively high stress levels, shows considerable deformation and a lower safety factor. This suggests that AL 2024 may experience noticeable wear and tear under high angular velocity conditions. Aluminum alloys like AL 2024 are generally known for their lightweight and corrosion resistance but may not be the most durable choice for wind turbine blades operating at such speeds.

Glass Fiber Reinforced Polymer (GRFP) demonstrates substantial deformation and stress levels, combined with a moderate safety factor. GRFP's performance indicates that it may experience structural wear and fatigue when subjected to high angular velocities. GRFP is commonly used in wind turbine blade manufacturing due to its cost-effectiveness and moderate mechanical properties, but its durability under extreme conditions may be a concern.

Aramid Fiber, known for its high strength-to-weight ratio and resistance to abrasion, exhibits a relatively high safety factor. However, it also demonstrates substantial deformation and stress levels. Aramid Fiber's durability appears to be moderate at this angular velocity, indicating that it may require more frequent maintenance compared to CFRP.

Pine, a natural wood material, exhibits a safety factor similar to GRFP but with significantly higher deformation and stress levels. Wood-based materials like Pine may suffer from dimensional

changes, warping, and fatigue under high-speed operation. While wood has advantages such as sustainability and low cost, its durability for wind turbine blades at 20.5 radians/s is a concern.

Glulam, another wood-based material that combines multiple layers of wood, demonstrates the lowest safety factor, high deformation, and stress levels. These results suggest that Glulam is less suitable for wind turbine blades operating at this angular velocity due to its lower durability compared to other materials.

In summary, the durability assessment at an angular velocity of 20.5 radians/s highlights the superior performance of CFRP as the most durable material among those tested. Its low deformation, stress, and high safety factor indicate that it can withstand the challenging operational conditions of high-speed wind turbines. In contrast, other materials like AL 2024, GRFP, Aramid Fiber, Pine, and Glulam exhibit varying degrees of wear and fatigue under these conditions.

These findings underscore the importance of selecting materials based on the specific operational requirements of wind turbines. While some materials may excel in terms of durability, they may come with trade-offs in terms of cost and manufacturability. Wind turbine designers must carefully balance these factors to optimize the overall performance, longevity, and economic feasibility of their systems. Additionally, it's essential to consider the environmental impact and sustainability of materials when making such decisions, aligning with the broader goals of renewable energy generation.

Conclusion

In conclusion for small-scale onshore wind turbine projects, where budget considerations weigh more heavily, alternatives like Pine and Bamboo come to the fore. These materials, while not matching CFRP's mechanical performance, offer their unique set of sustainability advantages. Pine, widely available in the UK and other regions, aligns with cost-effectiveness, reducing production expenses. Additionally, its capacity to absorb water and 100% recyclability make it a strong contender in eco-friendliness. Bamboo, an exceptionally sustainable material, exhibits rapid growth and impressive strength-to-weight characteristics. It possesses innate sustainability attributes, including high water absorption and recyclability. These features make bamboo a viable choice for small onshore turbines in regions where sustainability and low cost are paramount.

Recommendations

- 1. Education and Awareness:** Launch educational campaigns to raise awareness about the importance of sustainable wind energy. Engage communities and stakeholders in sustainable practices.
- 2. Environmental Impact Assessment:** Prior to wind energy project initiation, conduct comprehensive environmental impact assessments to mitigate potential adverse effects on local ecosystems and communities.

REFERENCES

1. Anderson, J. D. (2010). *Fundamentals of Aerodynamics* (5th ed.). McGraw-Hill.
2. Bakri, S., Chandrabakty, R. Alfriansyah, A. Dahyar, 2015. Potential coir fibre composite for small wind turbine blade application. *International Journal on Smart Material and Mechatronics*, 2(1), pp. 107–109.
3. Breton, S. P., & Moe, G. (2009). Status, plans and technologies for offshore wind turbines in Europe and North America. *Renewable Energy*, 34(3), 646-654.
4. Brøndsted, P., Holmes, J.W., Sørensen, B.F. and Sun, Z., 2009, July. Bamboo based composites for wind turbine blades. In *Proceedings of the 17th International Conference on Composite Materials (ICCM17)*, Edinburgh, UK (pp. 27-31).

5. Charlet, K., Baley, C., Morvan, C., Jernot, J. P., Gomina, M., Bréard, J., & Marais, S. (2017). Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. *Composites Part A: Applied Science and Manufacturing*, 98, 224-232.
6. Chen, Z., Liao, G., & Wang, L. (2019). *A comprehensive review on wind turbine array effect studies*. *Renewable and Sustainable Energy Reviews*, 107, 53-65.
7. Fecko, D., 2006. High strength glass reinforcements still being discovered. *Reinforced Plastics*, 50(4), pp.40-44.
8. GRAND, J.A., 2008. Wind power blades energize composites manufacturing. *Plastics Technology*, 54(10).
9. John, M. J., & Anandjiwala, R. D. (2008). Recent developments in chemical modification and characterization of natural fiber-reinforced composites. *Polymer Composites*, 29(2), 187-207.
10. Johansen, J. (2017). Optimizing Wind Turbine Blade Materials for Increased Longevity. *Energy Policy Journal*, 44(2), 101-110.
11. Khan, A., & Savi, P. (2020). *Sustainable materials for wind turbine blades – A review*. *Renewable and Sustainable Energy Reviews*, 133, 110260.
12. Khazem, E.A., Abdullah, O.I. and Sabri, L.A., 2019. Steady-state and vibration analysis of a WindPACT 1.5-MW turbine blade. *FME transactions*, 47(1), pp.195-201.
13. Kusiak, A., & Zastrozny, W. (2019). *Sustainable energy: Choices and effects*. *Applied Energy*, 242, 1561-1575.
14. Le Duigou, A., Davies, P., & Baley, C. (2014). Environmental impact analysis of the production of flax fibres to be used as composite material reinforcement. *Journal of Biobased Materials and Bioenergy*, 8(1), 1-13.
15. Li, X., Lei, Y., & Guo, Z. (2019). *Wind Turbine Blade Design*. In *Wind Turbine Aerodynamics* (pp. 285-313). Springer, Cham.
16. Liu, P. F., Zhu, J., & Zheng, J. (2012). *Advances in the Design of Composite Wind Turbine Blades*. *Composites Science and Technology*, 78, 1-12.
17. Lopez, V. A., Rostami, M., & Altan, M. C. (2017). Investigation of bamboo as potential reinforcement in structural composite materials. *Journal of Cleaner Production*, 145, 105-114.
18. Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2010). *Wind energy explained: theory, design and application*. John Wiley & Sons.
19. Martinez-Luengo, M., Kolios, A., & Wang, L. (2016). *Structural health monitoring of offshore wind turbines: a review through the Statistical Pattern Recognition Paradigm*. *Renewable Energy*, 93, 591-610.
20. MishnaevskyJr, L. and Brøndsted, P., 2009. Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites. *Composites science and technology*, 69(3-4), pp.477-484.
21. Nasir, A.A., Azmi, A.I. and Khalil, A.N.M., 2015. Measurement and optimisation of residual tensile strength and delamination damage of drilled flax fibre reinforced composites. *Measurement*, 75, pp.298-307.
22. Paquette, J., Veers, P., & Lundsager, P. (2007). Challenges in the design of large wind turbines. *Large Wind Turbines: Design and Economics*, 1(1), 25-42.

23. Petersen, H.N., Mikkelsen, L.P., & Madsen, H.A. (2015). Stiffness Predictions for the Full Cross-Sections of Wind Turbine Blades. *Wind Energy*, 19(1), 65-81.
24. Schubel, P.J., & Crossley, R.J. (2012). *Wind Turbine Blade Design. Energies*, 5(9), 3425-3449.
25. Shah, D. U. (2013). Developing plant fibre composites for structural applications by optimising composite parameters: A critical review. *Journal of Materials Science*, 48(18), 6083-6107.
26. Smith, G.C., Chao, Y.T., & Ashwill, T. (2013). *Design and Analysis of Carbon Fiber Reinforced Wind Turbine Blades*. Renewable Energy, 42, 66-73.
27. Sparnins, E., 2009. *Mechanical properties of flax fibers and their composites* (Doctoral dissertation, Luleåtekniskauniversitet).
28. Tavner, P. (2012). Wind turbine engineering. Routledge.
29. Thirumalai, D.P.R., 2012. Future materials for wind turbine blades-A critical review. In *International Conference on Wind Energy: Materials, Engineering and Policies (WEMEP-2012)*.
30. Thomas, L. and Ramachandra, M., 2018. Advanced materials for wind turbine blade-A Review. *Materials Today: Proceedings*, 5(1), pp.2635-2640.
31. Veers, P., Ashwill, T., Sutherland, H., Laird, D., Lobitz, D., Griffin, D., & Mandell, J. (2004). Trends in the design, manufacture and evaluation of wind turbine blades. *Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology*, 6(3), 245-259.
32. Zhang, B., Jia, L., Tian, M., Ning, N., Zhang, L. and Wang, W., 2021. Surface and interface modification of aramid fiber and its reinforcement for polymer composites: A review. *European Polymer Journal*, 147, p.110-352.