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Abstract:  

 

In the study, the head parts of the slopes of the selected three-tiered elastic plate are selected as 

search functions. Thus, a system of fifth order differential equations, which can be used to solve 

practical problems, has been created and mathematical operations are performed, and this system of 

equations can be eliminated by the Maple 12 program, which can occur in three-dimensional plate 

positions and tension graphs. 
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Introduction 

 

Currently, numerous research works are being conducted on multilayer structures, particularly 

three-layer plates. This is due to the high stiffness of three-layer plates during various vibration 

processes and the ease of solving economic problems. Many articles contribute to this body of work, 

including [1,2]. 

Multilayer structures, especially three-layer plates, are widely used in various fields of 

technology and construction. In many cases, the dynamic analysis of plates is conducted based on 

classical theories relying on Kirchhoff's hypotheses [3]. In some instances, dynamic calculations are 

based on refined S.P. Timoshenko-type equations that take into account transverse shear deformation 

and rotational inertia [4]. 

Over the last few decades, plate theories based on the exact solution method by G.I. Petrashen 

have been developed. In particular, using this method, symmetric structure theories for three-layer 

plates have been created by Professor I.G. Filippov and his students. 
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In this paper, the vibration equations of a three-layer elastic plate are derived using the 

aforementioned Petrashen–Filippov method, but considering the problem as a plane issue. Along with 

the vibration equations, an algorithm is developed that allows for the determination of stress 

deformation states at any cross-section of the plate with respect to coordinates and time. 

Problem Statement 

We consider a three-layer plate in the Cartesian coordinate system. The layers of the plate 

consist of different materials, and the contact between them is assumed to be perfect. The plate is 

analyzed in a state of planar deformation, viewed in its rectangular coordinates (Figure 1). The axes 

are directed along the contact line of the layers in the cross-section, and the vertical axis is directed 

perpendicular to it. The layers are numbered as "1," "2," and "3." Let the thicknesses of the layers be 

denoted as 0h , 1h  va 2h , with the Lame coefficients for the materials of the layers being ( )00 , , 

( )11 ,  , and ( )22 , , and their densities as 0 , 1  va 2 . 

The relationships between stresses and deformations at the points in the layers, as well as the 

equations of motion for layer points in the Cartesian coordinate system, are as follows: 
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here, the indices 2,1,0=m - denote the layer numbers.  

Considering that the potentials of transverse and longitudinal waves[6]   are the displacement vectors 

( )
mm

mm WUUU ,


=   of layer points in the state of planar deformation, we introduce[7]: 
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Here, kji


,, are the unit vectors of the coordinate axes. Substituting these expressions (3) into the 

equations of motion (2) leads us to the wave equations. 
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We assume that the plate is in a static state at time 0t , and at 0=t , dynamic loads begin to act on 

its boundary surfaces. The boundary conditions then take the following form: 

When mhz =   

( );, txf m

x

m

xz =   ( );, txf m

z

m

zz =    ( ).2,1,0,0 == mm

yz                          (5) 

Additionally, the following kinematic conditions are valid at the contact surfaces of the layers: 
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The initial conditions are assumed to be zero, that is, at t=0. 
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This, the problem of longitudinal vibrations of the three-layer plate is reduced to integrating the 

system of equations (7) under the boundary conditions (5), (6), and the initial conditions. 

The solution to the problem.  

To solve the problem, we need to use the potential functions for 
m

  and 
m

 .[5] 
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we will express them in the form and substitute them into [4]. 
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we will derive the equations. Here: 
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The above (5) shows that under symmetric loading, the plate oscillates longitudinally, and the 

solutions to the equations (9) are composed of 
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The displacements of the points of the layers can also be represented in the form of (8), and we will 

have expressions for the altered mm WU
~

,
~
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We will expand the right-hand side of these (12) expressions in a series based on the degrees of ( )zm  

and ( )zm  
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We will choose the boundary terms of the displacements 1

~
U   and 1

~
W   as the sought functions 

in the equations of motion for the three-layered plate, that is... 
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From here, 
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By substituting the above (12) expressions for the altered displacements mU
~

 and mW
~

  into the (6) 

contact conditions, we obtain a system of equations. Solving this system will allow us to express the 

constants 
( )1

1
A   and 
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1
B   in terms of 

( )1

0
A  and 

( )1

0
B . 

After this, by substituting the derived expressions into (13), we can further analyze or simplify the 

results accordingly. 
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To find the non-zero stresses 
( )m

xz
 , 

( )m

zz
  at an arbitrary point in the plate layers, we will express 

them similarly to (8). Then, we substitute (8) into (1) from the opposite side, equating it with the 

expression described in (8). 
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By substituting the values of 
( )1

1
A and 

( )1

1
B determined by the formulas (15) into the relationships (16), 

and expanding the hyperbolic functions in the resulting equations into power series based on the levels 

of the thickness coordinate, we obtain the general equations for longitudinal vibrations of the three-

layered plate. 

Since the orders of the derivatives in these equations are infinite, we assume that the conditions for 

truncating infinite series, as presented in [6], are satisfied. Thus, we limit ourselves to the first terms 

in the expansions. 

As a result, we arrive at the following system of equations that can be applied in practical problems. 
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Here, 
ijijij

SBA ,, are constants that depend on the elastic properties of the layers, as indicated 

in )2,1,( =ji . 

To solve the system of equations (17) for the vibrations of a freely supported three-layered plate, we 

incorporate the boundary conditions pertinent to the free-supported case. By using the 05.00 =h , 

0025.01 =h , 0025.02 =h , 38.00 =a , 12 =a , 26.00 =b ,  5.01 =b , 5.02 =b , 05.00 =z , 05.01 =z , 05.02 =z , 

015.0= ; 10109.1 −=xf , 10109.1 −=zf  "Maple 12" software, we can solve this system and determine 

the sought functions. 

This will allow us to find the displacements and stresses that develop within the layers of the three-

layered plate. 

For example, the displacements of the middle layer are expressed through the sought functions 

as follows. 
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By substituting the obtained functions for ( )( )txU ,0
0   and 

( )( )txW ,0
0  into these expressions, we can 

obtain the three-dimensional graphs of the displacements in the middle layer. Alternatively, we can 

generate graphs showing how the displacements in the middle layer change with respect to the 

coordinates for various values of time. 

Figure 2. Graphs of the Displacements of the Middle Layer and  Their Variation 

with Respect to Coordinates. 

a) 

 
 

b) 
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Obtained Results 

In this context, Figure 2 depicts the graphs of the displacements ( )xW0   and ( )xU 0
  of the 

middle layer points in a three-layered free plate, oriented along the axes. These graphs illustrate that 

as time increases, the displacement graphs also increase accordingly. This behavior highlights the 

dynamic response of the plate under vibrational conditions. 

 

References 

1. Lopatov A.V., Udaltsov R.A. Symmetric vibrations of three-layer plates // Siberian State 

Aerospace University Bulletin. 2010. Issue 2(36). P. 53-61. 

2. Altukhov E.V., Fomenko M.V. Elastic vibrations of three-layer plates with symmetric 

structure // Applied Problems of Mechanics and Mathematics. 2009. Issue 6. P. 139-145. 

3. Alexandrov A.Ya., Kurshin L.M. Three-layer plates and shells // Strength, Stability, 

Vibrations. – Moscow: Machinery, 1968, Vol. 2. – P. 245-308. 

4. Grigolyuk E.I., Selezov I.T. Non-classical theories of vibrations of rods, plates, and shells // 

Advances in Science and Technology. Series: Mechanics of Deformable Solids. – Vol. 5 – 

Moscow: VINITI, 1973. – 272 p. 

5. Petrashen G.I., Khinen E.V. On engineering equations of vibrations of imperfectly elastic 

plates // Proceedings of the MIAN. Vol. 95. – Leningrad: Science, 1968. – P. 151 – 183. 

6. Filippov I.G., Cheban V.G. Mathematical theory of vibrations of elastic and viscoelastic plates 

and rods. – Kishinev: "Shtiintsa", 1988. – 188 p. 

7. Khudoynazarov Kh.H. Unsteady interaction of cylindrical shells and rods with a deformable 

medium. – Tashkent: Abu Ali Ibn Sino Publishing House, 2003, 325 p. 

8. Razzoqov N.S., Yaxshiboyev Sh.R., Buriboyev Sh.A. Modeling the operational state of 

suspended roofs with large spans and unique load-bearing elements. E3S Web of Conferences 

2024 Second International Conference on Sustainable Technologies in Civil and 

Environmental Engineering (ICSTCE 2024) https://www.e3s-conferences.org/ 

9. Yaxshiboyev Sh.R. Nonstationary transverse vibrations of a three-layer viscoelastic plate. 

ASEAN Journal on Science & Technology for Development Vol 39, No 4, 2022, 54-62 DOI 

10.5281/zenodo.6457545 

10. Yaxshiboyev Sh.R., Melikulov N., Kuchkarov S. Equations of anti-symmetric vibrations of 

an elastic three-layer plate // Scientific Journal of Mechanics and Technology. Namangan – 

2023. No. 1, pp. 171-176. 

11. Khudoynazarov Kh., Yaxshiboyev Sh.R. The Mathematical Model of Transverse Vibrations 

of the Three-Layer Plate. // IOP Conf. Series: Earth and Environmental Science 614 (2020) 

012062 IOP Publishing doi:10.1088/1755-1315/614/1/012062 

12. Razzoqov N.S., Yaxshiboyev Sh.R., Tleubayeva T.A. Stage-wise operation of supporting 

contours of suspended systems in installation and operational states. // International Scientific 

Journal Theoretical & Applied Science 04 (132), 166-170. Soi: http://s-o-i.org/1.1/TAS-04-

132-18 Doi: https://dx.doi.org/10.15863/TAS 

 

 

https://www.e3s-conferences.org/
http://s-o-i.org/1.1/TAS-04-132-18
http://s-o-i.org/1.1/TAS-04-132-18
https://dx.doi.org/10.15863/TAS

