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Abstract:

Abstract. This paper investigates Genetic Algorithm (GA)-driven hyperparameter
optimization for one-dimensional Convolutional Neural Networks (1D-CNNS) in network intrusion
detection systems (NIDS). Building on prior evidence that evolutionary search markedly improves
deep models for NIDS, we optimize nine key hyperparameters (filters, kernel size, pooling size,
dense depth/width, dropout, learning rate, batch size, and epochs) and train/evaluate on UNSW-
NB15, CIC-IDS2017, and NSL-KDD using standard metrics: accuracy, loss, precision, recall, and
F1-score. Our GA framework encodes hyperparameters as chromosomes and evolves candidates
via selection, crossover, and mutation to maximize validation performance. Experiments show that
GA-tuned 1D-CNNs consistently outperform non-optimized baselines across datasets; on UNSW-
NB15, for example, GA attains ~99.31% accuracy, aligning with the best reported performance for
GA-optimized 1D-CNNSs. Results highlight that GA delivers robust gains with practical compute
budgets while preserving strong precision-recall trade-offs, and that effectiveness can vary by
dataset characteristics. Overall, GA-based hyperparameter optimization offers a simple,
reproducible path to higher accuracy and reliability in deep learning—based NIDS, advancing the
development of adaptable intrusion-detection solutions for evolving cyber threats.

Keywords: intrusion-detection system (IDS); network intrusion detection system (NIDS);
convolutional neural network (CNN); one-dimensional convolutional neural network (1D-CNN);
hyperparameter optimization; genetic algorithm (GA).
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1. Introduction

As networked services proliferate, cyberattacks have grown in volume and sophistication, making the protection of
digital assets a central concern for organizations and individuals. Network intrusion detection systems (NIDSs) are
deployed to monitor traffic and identify malicious activity in real time, yet traditional rule- and signature-based approaches
struggle to keep pace with novel or evolving threats. Deep learning, and in particular one-dimensional convolutional
neural networks (1D-CNNSs), has shown strong promise for learning discriminative patterns from sequential network-flow
features [1]. However, the performance of a 1D-CNN-based NIDS depends critically on hyperparameters such as the
number of filters, kernel and pooling sizes, depth and width of dense layers, dropout rate, learning rate, batch size, and
training epochs. Manual tuning of these choices is labor-intensive, dataset-dependent, and prone to suboptimal
configurations. To address this challenge, this paper focuses on the Genetic Algorithm (GA) as an evolutionary search
method for hyperparameter optimization. GA’s selection, crossover, and mutation operators provide an adaptive balance
between exploration and exploitation, offering a practical route to discover performant configurations for 1D-CNN
intrusion detectors while reducing human effort and trial-and-error [2].

The aim of this study is to develop and evaluate a GA-driven framework that automatically optimizes the
hyperparameters of a 1D-CNN for network intrusion detection across widely used benchmarks [3]. We investigate
whether GA can consistently enhance accuracy and related detection metrics by navigating the high-dimensional
configuration space more efficiently than manual or naive search. The study contributes an end-to-end, reproducible
optimization pipeline that encodes nine key hyperparameters and evolves candidate solutions to maximize validation
performance; a comprehensive empirical assessment on UNSW-NB15, CIC-IDS2017, and NSL-KDD demonstrating
improvements over non-optimized baselines; and an analysis of GA behavior that clarifies practical settings for population
size, crossover and mutation rates, and early stopping to balance compute cost with accuracy. Beyond raw performance
gains, the framework is designed to be adaptable to other deep architectures and operational contexts, reducing the time
and expertise required to deploy reliable, up-to-date NIDS models in practice [4].

The remainder of the paper proceeds as follows. Section 2 reviews related work on deep learning—based intrusion
detection and hyperparameter optimization methods, positioning our approach in the literature. Section 3 details the
proposed GA optimization framework, including the encoding of hyperparameters and the selection, crossover, mutation,
and elitism strategies. Section 4 presents the 1D-CNN architecture, datasets, and preprocessing pipeline used in our
experiments. Section 5 describes the experimental setup, evaluation metrics, and results obtained by the GA-optimized
models. Section 6 discusses the findings, analyzes GA convergence and sensitivity, and reflects on implications for
practical deployment. Section 7 concludes with a summary of contributions and outlines directions for future research.

2. RELATED WORK

Research on hyperparameter optimization for intrusion detection has evolved from manual, heuristic practices to
principled search and metaheuristic methods. Early deep learning—based NIDS studies often relied on manual tuning or
coarse grid/random search, approaches that are labor-intensive and prone to suboptimal configurations because the search
space is large and dataset-specific [5]. The foundational problem is that 1D-CNN performance hinges on choices such as
the number of filters, kernel and pooling sizes, dense-layer depth and width, dropout, learning rate, batch size, and epochs;
these are not learned from data but fixed before training, so poor settings can hurt convergence and generalization. Prior
work therefore framed hyperparameter selection as an optimization problem to be solved with data-driven search rather
than intuition alone, motivating the move toward more efficient optimizers for CNN-based NIDS [6].

Randomized search improved coverage of high-dimensional spaces under fixed budgets by sampling configurations
and selecting those that validated well, while successive-halving and bandit-inspired methods such as Hyperband
allocated budget adaptively to promising candidates [7]. Bayesian optimization, including Tree-Structured Parzen
Estimators, brought a model-based view that balances exploration and exploitation and handles conditional
hyperparameters. Alongside these, neuroevolution and architecture search explored topology and weight spaces jointly to
trade detection performance against model complexity [8]. Collectively, these strands established that principled search
reliably outperforms manual tuning for NIDS hyperparameters and that the best method can be context dependent, varying
with dataset characteristics and model capacity [9].

Within metaheuristics, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) have been especially
influential due to their ability to navigate mixed discrete—continuous spaces and to maintain diversity while seeking high-
fitness regions [10]. GA encodes hyperparameters as chromosomes and iteratively applies selection, crossover, and
mutation, offering strong exploratory behavior that helps avoid premature convergence [11]. PSO represents
configurations as particles updated toward personal and global bests, often yielding faster convergence on smooth fitness
landscapes. In the specific context of 1D-CNN-based NIDS, both GA and PSO have been shown to produce substantial
gains in accuracy, precision, recall, and F1 over non-optimized baselines across standard benchmarks such as UNSW-
NB15, CIC-1DS2017, and NSL-KDD, underscoring the value of evolutionary optimization for this task [12].
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The present paper builds on this trajectory but narrows the focus to a GA-centric optimization framework tailored to
1D-CNN hyperparameters for NIDS [13]. By concentrating on GA’s evolutionary operators and their practical settings,
and by evaluating across multiple benchmarks with standardized metrics (accuracy, loss, precision, recall, and F1), the
study aims to clarify when and why GA is particularly effective and how its search dynamics can be tuned for robust
performance with reasonable compute budgets [14]. In doing so, it complements comparative studies that include PSO
by providing a detailed, single-method treatment of GA for IDS hyperparameter optimization while preserving
comparability through the same datasets and evaluation criteria [15].

3. OPTIMIZATION OF 1D-CNN HYPERPARAMETERS

A. Hyperparameters of 1D-CNNs

Hyperparameter tuning, often referred to as hyperparameter optimization, is one of the most critical yet challenging
stages in designing and training one-dimensional convolutional neural networks (1D-CNNs). Hyperparameters define the
structure, learning behavior, and regularization of the model, directly influencing its detection accuracy, convergence rate,
and generalization capability [16]. They govern key aspects such as how features are extracted, how fast learning occurs,
and how well the model avoids overfitting.

Unlike model parameters, which are learned during training, hyperparameters must be set manually before training
begins. These include structural hyperparameters such as the number of convolutional filters, kernel size, pooling size,
number of dense layers, and number of neurons; training-related hyperparameters like learning rate, batch size, and
number of epochs; and regularization hyperparameters such as dropout rate. Each of these settings interacts with others
in nonlinear ways—changing one can significantly affect the performance of the entire model [17].

Finding optimal hyperparameter combinations is therefore a complex search problem. Manual or trial-and-error
tuning can be time-consuming and may fail to identify configurations that generalize well across datasets. Moreover,
optimal settings vary depending on the dataset’s characteristics, such as size, feature distribution, and class imbalance.
For these reasons, automated and intelligent optimization approaches are needed to improve model performance and
efficiency in intrusion detection [18].

B. Optimization Method: Genetic Algorithm (GA)

The Genetic Algorithm (GA) is an evolutionary computation technique inspired by the process of natural selection
and genetic evolution. It is designed to efficiently search large and complex spaces by simulating biological processes
such as reproduction, crossover, and mutation. In the context of 1D-CNN hyperparameter optimization, GA is particularly
effective because it can explore both discrete and continuous parameter spaces while maintaining diversity among
candidate solutions [19].
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Figure 1. Operational procedure of GA
In a GA-based optimization framework, each candidate solution—known as an individual—is represented as a
chromosome that encodes a specific set of hyperparameters. The algorithm begins with an initial population of randomly
generated individuals. During each generation, the following steps are performed:

1. Initialization: A population of hyperparameter configurations is generated randomly within predefined bounds.

2. Fitness Evaluation: Each individual’s performance is evaluated by training a 1D-CNN with its corresponding
hyperparameters and measuring a fitness score, typically based on validation accuracy or F1-score.

3. Selection: The best-performing individuals are selected as parents based on their fitness scores. Selection
strategies such as tournament or roulette-wheel selection are often used to ensure that individuals with higher
fitness have a greater chance of contributing to the next generation.

4. Crossover: New offspring are produced by combining parts of parent chromosomes. This step allows the
algorithm to exploit promising regions of the search space.

5. Mutation: Random changes are introduced into some offspring to maintain diversity and avoid premature
convergence.
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6. Replacement: The least fit individuals in the population are replaced by the new offspring, ensuring that the

population evolves toward better-performing solutions.

7. Termination: The process continues until a stopping criterion is reached, such as a maximum number of

generations or a convergence threshold.

The GA optimization process strikes a balance between exploration and exploitation, allowing the search to cover a
wide range of possible hyperparameter values while gradually refining the best-performing configurations. Figure 1
illustrates the overall workflow of GA-based hyperparameter optimization for 1D-CNN models, where the evolutionary
process iteratively refines the population until an optimal or near-optimal configuration is achieved [20].

By applying GA to tune critical hyperparameters—including filter size, kernel size, number of layers, learning rate,
dropout rate, and batch size—the 1D-CNN achieves enhanced detection performance and improved generalization across
network intrusion datasets. The adaptive and flexible nature of GA makes it a powerful approach for building optimized
and reliable intrusion-detection systems capable of handling diverse and evolving cybersecurity challenges [21].

4. PROPOSED 1D-CNN-BASED NETWORK INTRUSION-DETECTION MODEL

A. Overview of the 1D-CNN architecture

The proposed 1D-CNN receives a one-dimensional sequence of preprocessed features and maps it to a binary decision
indicating benign or attack traffic. The input layer expects data shaped as (sequence_length, 1), reflecting a single
feature channel over time. Feature extraction is performed by two successive 1D convolutional layers. Each layer applies
a bank of learnable filters that slide along the sequence to compute local dot-products and emit feature maps; the number
of filters and the kernel size are treated as tunable hyperparameters so the model can adjust both representational capacity
and receptive-field length to the statistics of the dataset. After each convolution, a max-pooling layer downsamples the
temporal dimension by retaining the maximum within non-overlapping windows. Pooling size is also optimized because
it trades spatial resolution for invariance and affects the depth-wise signal-to-noise characteristics learned downstream.
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Figure 2. 1D-CNN Model for NIDSs

The convolutional stack is followed by a flattening operation that reshapes the tensor of feature maps into a vector
suitable for fully connected processing. One or more dense layers then perform high-level discrimination on the extracted
features; both the number of dense layers and the number of neurons per dense layer are optimized to balance expressivity
against overfitting. Each dense layer uses ReL U activations to introduce nonlinearity, while dropout is interleaved after
dense layers to regularize training by randomly zeroing a fraction of activations, with the dropout rate itself optimized as
part of the search. The final output layer employs a sigmoid activation to produce a probability for the positive class in
the binary setting. In addition to structural choices, the learning rate, batch size, and number of training epochs are key
training-procedure hyperparameters that strongly influence convergence behavior and generalization; these are included
in the optimization so the model can adapt end-to-end to each dataset’s characteristics.

B. Hyperparameter-optimization problem formulation

We cast hyperparameter selection as a constrained optimization problem. Let x = [x1, ... , x9] denote the vector of
hyperparameters comprising number of convolutional filters (x1), kernel size (xz), pooling size (x3), number of dense
layers (x4), number of neurons per dense layer (xs), dropout rate (xe), learning rate (x7), batch size (xs), and number
of epochs (x9). The objective is to maximize a fitness function ¢(x) that measures validation performance (e.g., accuracy
or F1-score when classes are imbalanced) under dataset-specific preprocessing and a fixed training/validation split.
Formally,
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x\* = arg max ¢(x)
X

subject to the discrete and continuous bounds used in prior work on 1D-CNN-based IDS:
x1 € {16,32, 64,128, 256},
x2 € {3,5,7,9,11},
2 < x3<6,
1< x4 <5,
xs € {16,32, 64,128, 256},
0.1 <x6 < 0.5,
10-5 < x; < 1072,
xs € {16,32, 64,128, 256}, and
10 < x9 < 100.
These ranges cover common practice for CNN capacity, receptive-field control, regularization, and training dynamics in
IDS settings. Because the search space mixes discrete and continuous variables and exhibits nonconvex, multimodal
structure, we approach it with a population-based evolutionary optimizer.
C. Genetic Algorithm (GA) for hyperparameter optimization
We employ a Genetic Algorithm to solve the optimization, representing each candidate configuration as a
chromosome that encodes the nine hyperparameters within the stated bounds. The process begins with a randomly
initialized population of configurations. For each generation, every individual is instantiated as a 1D-CNN with the
encoded hyperparameters, trained on the training split with early-stopping safeguards, and scored on a held-out validation
set to produce its fitness ¢(x). Parent selection favors higher-fitness individuals while preserving diversity; crossover
then recombines parental genes to form offspring that inherit complementary architectural and training traits; mutation
injects small random perturbations to selected genes to maintain exploration and reduce the risk of premature convergence.
The next generation is formed by replacing the least fit individuals with offspring, optionally retaining a small elite set of
top performers unchanged to stabilize progress. The algorithm terminates after a fixed number of generations or when the
best fitness plateaus, returning the highest-fitness configuration for final training and test evaluation.
Algorithm 1: Optimizing 1D CNN hyperparameters for IDS using GA

Data: Population size | P|, Maximum number of generations G
Result: Best individual in P based on fitness ¢

1 Initialize population P of size | P| with random solutions

2 forg =1toGdo

3 for each individual x in P do

4 Train 1D CNN model using hyperparameters x

5 Evaluate fitness of x as ¢(x) on the validation set
6 end

7 new_population « empty set

8 while size of new_population < |P| do

9 parentl, parent2 < SELECTION(P)

10 Crossover: of fspringl,of fspring2 <— CROSSOVER(parent1, parent2)
1 Mutation: of fspringl < MUTATE(of fspring1)

2 of fspring2 < MUTATE(of fspring2)

13 Add of fspringl and of fspring?2 to new_population
14 end

15 P « new_population

16 best_solution «+ max(P, key=fitness)

17 print “Generation:”, g, “Best Solution:”, best_solution
18 end

19 return best individual in P based on fitness ¢
20 Function Selection(P)
21 Implement a selection strategy, e.g., roulette wheel or tournament

23 Function Crossover (parent1, parent2)
24 Implement a crossover strategy, e.g., single-point or uniform crossover

26 Function Mutate(of fspring)
27 for each hyperparameter i in of fspring do

28 With mutation probability:
29 Randomly modify the value of i within its allowed range
30 end

w

return mutated_of fspring

In practice, careful implementation details improve robustness and efficiency. Fitness is computed with a metric
aligned to deployment goals (e.g., F1-score for imbalanced data), training uses consistent preprocessing and class
balancing, and early stopping and capped epochs bound per-individual cost. Gene encodings ensure feasibility for discrete
choices such as filter counts and kernel sizes, while continuous genes such as learning rate and dropout are clipped to
their allowable intervals after crossover and mutation. This GA workflow operationalizes hyperparameter optimization
for 1D-CNN-based IDS as a reproducible, end-to-end search over architecture and training settings, yielding
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configurations that have been shown to substantially improve validation and test performance over non-optimized
baselines on standard datasets.

D. Data Preprocessing

For this study, three widely used and diverse datasets have been selected to evaluate the performance of the proposed
1D-CNN-based network intrusion detection system (NIDS). These datasets have been chosen for their variety in terms of
attack types, complexity, and relevance to the field of network security. Each dataset provides a unique challenge and
contributes to a comprehensive understanding of how well the hyperparameter optimization strategy performs across
different intrusion detection scenarios. The datasets used in this study include UNSW-NB15, CIC-IDS2017, and NSL-
KDD.

Dataset

@ NSL-KDD
@ CIC-IDS2017
UNSW-NB15
@ KDD CUP99
@ CSE-CIC-
IDS2018 6.4%

@ Other

14.8%

Figure 3. Percentage of datasets used in the CNN-1DS approaches

The UNSW-NB15 dataset was developed by the University of New South Wales (UNSW) in collaboration with the
Australian Centre for Cyber Security (ACCS) and aims to provide a more modern and diverse alternative to existing NIDS
datasets. It contains a range of network traffic features and introduces a variety of attack categories, making it particularly

suitable for testing advanced intrusion detection systems. The dataset includes attack types such as fuzzers, backdoors,
denial-of-service (DoS), exploits, reconnaissance, shellcode, and worms. This broad selection of attack types offers a
comprehensive test for the proposed 1D-CNN model, providing valuable insights into the model’s ability to detect various
contemporary attack patterns. All samples from the UNSW-NB15 dataset were utilized for the experiments in this study.
The CIC-IDS2017 dataset, developed by the Canadian Institute for Cybersecurity (CIC), is one of the most
comprehensive intrusion detection datasets available. It includes a wide range of attack scenarios, including brute force,
Heartbleed, Botnet, DoS, DDoS, web attacks, and infiltration. This dataset provides labeled data for different types of
network intrusions, which is extremely useful for training and testing machine learning-based models. The large and
diverse set of features present in the CIC-IDS2017 dataset ensures that the model can be rigorously evaluated across a
variety of intrusion types, making it an ideal choice for assessing the robustness of the hyperparameter optimization
method. The entire dataset was employed in our experiments.

The NSL-KDD dataset is a refined version of the widely used KDD Cup 1999 dataset, which was designed to address
several issues with the original dataset, such as redundant and duplicate records. NSL-KDD contains a mixture of normal
traffic and various forms of intrusions, divided into four categories: DoS (Denial-of-Service), R2L (remote-to-local
access), U2R (unauthorized access to local superuser privileges), and Probe (network surveillance and probing). This
dataset includes both packet header features and content features derived from the payloads of network packets, offering
a rich source of data for detecting various types of intrusions. Given its refined structure, NSL-KDD is particularly
valuable for testing the generalization ability of the proposed 1D-CNN model in detecting a range of network threats.

The effectiveness of any machine learning model heavily depends on the quality of the data and the preprocessing
steps applied. To ensure that the datasets are well-suited for training the proposed 1D-CNN, we performed extensive
preprocessing on each of the datasets to clean and transform them into a format suitable for model training.

The first step in preprocessing involved checking for missing values or any null entries in the datasets. Missing or
incomplete data can significantly skew model training, so any rows containing null values, infinite values, or NaNs were
removed. This step ensures that the model is trained on valid, complete data.

We performed a correlation analysis to identify highly correlated features. Features with a correlation coefficient
greater than 0.95 were excluded to reduce multicollinearity and ensure that each feature contributes unique information.
This process is essential for improving model performance by eliminating redundancy.

Feature engineering is a key step to enhance the model’s ability to make accurate predictions. In our study, we
combined certain features to create new, more informative ones. For example, we combined the features "sbytes" and
"dbytes" to generate a new feature, "network_bytes," which gives a more holistic view of the network traffic. Additionally,
we excluded irrelevant features such as "srcip," "sport,” "dstip,” "dsport," and "attack_cat" as they did not provide value
for the specific binary classification task.
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To ensure that all features are on a similar scale, we applied standardization to the numerical features, transforming
them to have a mean of 0 and a standard deviation of 1. This step prevents the model from being biased towards features
with larger numerical values. For categorical variables like "proto," "service," and "state," we applied one-hot encoding
to convert them into numerical values, which is necessary for machine learning algorithms to process categorical data
effectively. This transformation resulted in a total of 197 features.

To rigorously evaluate the performance of our model, we split each dataset into three subsets: training, validation,
and testing. The data was split in a 70:10:20 ratio, ensuring that the model is trained on a large portion of the data while
being validated and tested on unseen examples. This strategy helps prevent overfitting and ensures that the model
generalizes well to new data.

Each dataset required its own set of specific preprocessing steps. For the CIC-1DS2017 dataset, we transformed the
"Label" column to binary values, with "BENIGN" mapped to 0 and all other entries mapped to 1, indicating different
types of intrusions. Irrelevant features like “Bwd PSH Flags” and “Fwd Avg Bytes/Bulk” were removed, and duplicate
entries were excluded. We also applied feature scaling and split the dataset into training, validation, and testing subsets.

For the NSL-KDD dataset, we followed a similar approach, modifying the labels for binary classification and
removing features like "num_outbound_cmds" that did not contribute valuable information. After one-hot encoding the
categorical variables, we performed feature selection to keep only the most influential features. The dataset was then split
and standardized as in the other datasets.

These preprocessing steps were designed to ensure that the data fed into the 1D-CNN model is clean, relevant, and
standardized, thereby maximizing the model’s potential for learning and improving its detection performance. The next
section outlines the experiments conducted with these preprocessed datasets to evaluate the efficacy of the hyperparameter
optimization strategy.

5. EXPERIMENTS AND RESULTS

The proposed GA-optimized 1D-CNN-based intrusion-detection model was implemented in Python using the Keras
library, built on top of TensorFlow. All experiments were conducted in this environment to ensure flexibility and
reproducibility.

A. Evaluation Metrics

To assess the performance of the proposed model, we used four key evaluation metrics: accuracy, precision, recall,
and F1-score. These metrics provide a balanced view of model performance, especially for binary classification problems
such as intrusion detection.

1. Precision (P) measures how many of the predicted intrusions were actual attacks:

Precision = .
TP+FP

2. Recall (R) measures how many of the actual intrusions were correctly detected:

Recall = r

TP+FN

3. F1-score is the harmonic mean of precision and recall, providing a balanced assessment of both:

PrecisionXRecall
Precision+Recall

4. Accuracy (A) measures the overall correctness of the model:

TP+TN
Accuracy =

TP+TN+FP+FN

These metrics together help quantify how well the model detects attacks while minimizing false alarms and missed
detections.

B. Hyperparameter Optimization using Genetic Algorithm

In our experimental setup, the Genetic Algorithm (GA) was initialized with a population size of 20 and set to evolve
over 10 generations. The mutation rate was fixed at 0.1, and the crossover rate at 0.5. The GA begins by generating an
initial population of candidate hyperparameter sets for the 1D-CNN.

Each individual (i.e., a specific combination of hyperparameters) in the population was evaluated using a fitness
function defined as the validation accuracy of the trained 1D-CNN. Based on their fitness scores, individuals with higher
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performance were selected as parents for the next generation. The crossover operation produced offspring by mixing
parent hyperparameters, while mutation introduced diversity by randomly altering certain hyperparameters within their
valid ranges. The lowest-performing individuals were replaced by offspring, and this evolutionary process was repeated
for 10 generations.

After the GA converged, the best individual—representing the optimal hyperparameter set—was used to train the
final model. The optimized hyperparameters are summarized in Table 1.

Table 1. GA-based hyperparameter optimization results

Hyperparameter Range UNSW-NB15 CIC-IDS2017 NSL-KDD
Number of filters [16, 32, 64, 128, 256] 64, 128 64, 128 32,64
Kernel size [3,5,7,9,11] 5 9 9
Pooling size (2, 6) 3 5 5
Number of dense layers (1,5) 2 2 1
Neurons in dense layers  [16, 32, 64, 128, 256] 128 256 128
Dropout rate (0.1,0.5) 0.277 0.114 0.253
Learning rate (1x1075, 1x107?) 0.0035 0.0012 0.0005
Batch size [16, 32, 64, 128, 256] 256 64 32
Number of epochs (10, 100) 75 99 72

After training and validation with these optimized hyperparameters, the final model was evaluated on the test sets of
each dataset. The results are summarized in Table 2.
Table 2. Comparison of the effectiveness of GA on various datasets

Dataset Loss Accuracy
UNSW-NB15 144 99.31%
CIC-IDS2017  1.15 99.71%
NSL-KDD 1.78 99.63%
Model accuracy Model accuracy Model accuracy
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Figure 4. Model accuracy when using GA
The accuracy and low loss values across all three datasets demonstrate the effectiveness of GA in optimizing
hyperparameters for the 1D-CNN. Figures 4 and 5 illustrate the model’s training and validation accuracy and loss trends,
respectively, confirming that the GA-optimized configuration achieves fast convergence and stable learning performance.
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Figure 5. Model loss when using GA
In summary, the GA-based optimization significantly improved the detection accuracy and reduced training loss
across all datasets, validating the algorithm’s robustness and its capability to efficiently explore the hyperparameter search
space for complex intrusion detection tasks.
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6. DISCUSSION

A. Analysis of the Results of the GA-Based Model
This section presents a detailed analysis of the results obtained using the Genetic Algorithm (GA) for hyperparameter

optimization of the 1D-CNN-based intrusion-detection model. The primary goal of the GA was to identify the optimal set
of hyperparameters that enhance the performance of the model across different benchmark datasets—UNSW-NB15, CIC-
IDS2017, and NSL-KDD.

The GA-optimized model consistently achieved excellent results on all three datasets, with accuracies of 99.31 % on
UNSW-NB15, 99.71 % on CIC-IDS2017, and 99.63 % on NSL-KDD. The corresponding low loss values (1.44, 1.15,
and 1.78, respectively) indicate efficient convergence and stable learning. These findings clearly demonstrate the GA’s
capacity to fine-tune model hyperparameters effectively, thereby improving detection accuracy while maintaining low
error rates.

Confusion Matrix Confusion Matrix Confusion Matrix

14000
400000
400000
: - 12000
s - 350000 g
350000 e
227 1 2 821 679 2 o
g 300000 = 30000
300000 2
_ 250000
- 250000 J 2 8000
-200000 ©
- 200000 2 =i - 6000
- 150000 - 130000
2087 g 5 g - - 4000
2087 62092 L 100660 2 796 84466 - 100000 B
- 2000
- 50000 - 50000

No Intrusion Intrusion No Intrusion Intrusion No Intrusion Intrusion
Predicted Label Predicted Label Predicted Label

(a) UNSW-NB15 (b) CIC-IDS2017 (¢) NSL-KDD
Figure 6. Confusion matrix using GA

A deeper inspection of the confusion matrices (Figure 6) provides insights into the classification behavior of the GA-
based model. On UNSW-NB15, the model accurately classifies 442,273 benign instances out of 444,831 and correctly
identifies 62,092 intrusions, reflecting a high true-negative and true-positive rate. Similarly, on CIC-1DS2017, the model
correctly recognizes 418,219 non-intrusive and 84,466 intrusive instances. On NSL-KDD, it identifies 12,359 intrusion
cases accurately, confirming its robustness and adaptability across datasets.

Table 3. Comparative analysis of our models with the existing CNN-based models

No Intrusion
G
a
@

No Intrusior

True Label
True Labe!

Intrusion

intrusion
intrusion

Dataset Model Year  Accuracy  Precision  Recall  F1-Score
CNN[22] 2018 949 - - -
1D-CNN [23] 2019 912 8753 9617 9159
UNSW-NB15 CNN-IDS [24] 2021 01 ; ; )
BCNN [25] 2021 9025 01 90 90.45
GA-1D-CNN 2023 9931 99 08 08
CNN-MCL [26] 2020 99.46 99.76 9915  99.46
CNN [27] 2022 99.41 ; ; ;
CIC-IDS2017 15 cNN 28] 2022 9868 99.2 9894  98.96
GA-1D-CNN 2023 99.71 100 99 99
CNN [29] 2018 80.13 - - -
SMOTE-ENN[30] 2019 8331 96.97 - .
CNN-1D [31] 2019 84.29 74.62 - -
Multi-CNN [32] 2019  86.95 8956 8725 8841
IBWNIDM [33] 2019 9536 95.55 ) ;
Improved CNN [34] 2019 99.23 - - -
IDS-CNN [35] 2020  97.7 ; ; -
NSL-KDD  pyicnN [36] 2020 9465 96.66 - -
CNN(AVG) [37] 2020  88.82 - - 90.67
AS-CNN [38] 2020 84.08 80 - -
BCNN-DFS [25] 2021  90.14 90 90 90
CNN [39] 2021 99 98 97 97
CNN-B [27] 2022  84.82 8574  87.96 )
GA-1D-CNN 2023 99.63 99 99 99

Overall, the GA-optimized 1D-CNN demonstrates remarkable sensitivity and specificity, achieving a delicate balance
between detecting malicious activities and minimizing false alarms. The evolutionary search mechanism of GA—
combining selection, crossover, and mutation—proves highly effective in exploring complex, nonlinear hyperparameter

177 | INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY
www.multijournals.org


http://www.multijournals.org/
https://www.mdpi.com/2227-7390/11/17/3724#B22-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B23-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B24-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B25-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B26-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B27-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B28-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B29-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B30-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B31-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B32-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B33-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B34-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B35-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B36-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B37-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B38-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B25-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B39-mathematics-11-03724
https://www.mdpi.com/2227-7390/11/17/3724#B27-mathematics-11-03724

spaces and avoiding local minima. This ensures consistent discovery of near-optimal solutions for diverse intrusion-
detection tasks.

B. Comparison with Existing Methods

To assess the contribution of the proposed GA-optimized model, we compare its performance with previously
reported CNN-based intrusion-detection systems. The results (Table 3) clearly show that the GA-1D-CNN surpasses
conventional CNN architectures that rely on manually or heuristically selected hyperparameters.

Existing studies often overlook the critical influence of hyperparameter tuning on model performance. By integrating
a systematic evolutionary approach, our GA-based method overcomes this limitation and consistently achieves higher
precision, recall, and F1-scores across all datasets. The fine-tuning process allows the CNN to automatically adapt its
structure and learning dynamics to the intrinsic properties of each dataset, leading to enhanced generalization and
detection accuracy.

Table 4. Comparison of our models with hybrid CNN and ML IDS

Dataset Model Year Accuracy Precision Recall F1-Score
SGM-CNN [40] 2020  98.82 99.74 - 95.53
OCNN-HMLSTM [6] 2021 96.33 100 95.87 98.13
CNN + LSTM [41] 2022 87.6 85.5 90.6 88
ODODL-IDS [10] 2022 92.87 97.33 77.53 72.53

UNSW-NBIS “cNN+ LsTM [42] 2023 9321 - - -
CNN-LSTM [43] 2023 96.99 95.45 - -
OHDNN + ECRF [44] 2023 98.3 975 96.7 97.1
GA-1D-CNN 2023 99.31 99 98 98
SDCNN [45] 2021 99.35 - - -
Tree-CNN [46] 2021 98 - - 98
ODODL-IDS [10] 2022 97.62 97.26 97.25 99
CIC-IDS2017 “GNN1D+BLSTM[47] 2023 98 86 84 81
GAN-CNN-BIiLSTM [48] 2023 96.32 96.55 95.38 96.04
GA-1D-CNN 2023 99.71 100 99 99
DCNN [4] 2018 8522 97 - -
IFS-CNN-BG [49] 2020  98.24 95.44 - -
PSO-CCNN [50] 2021 9871 - - -
OCNN-HMLSTM [6] 2021 90.67 86.71 95.19 91.46
CNN + LSTM [41] 2022 95.2 99.5 90.8 94.9
NSL-KDD  ODODL-IDS [10] 2022 89.09 95.38 99.65 78.44
CNN-LSTM [43] 2023  97.23 96.45 - -
OHDNN [44] 2023 97.17 97.32 97.02 95.92
TL-CNN-IDS [11] 2023 99.53 97.63 96.77 97.13
LSTM-CNN [5] 2023 97.8 93.71 96.19 95.46
GA-1D-CNN 2023 99.63 99 99 99

Compared with hybrid CNN-ML intrusion-detection frameworks (Table 4), the GA-optimized model maintains
competitive or superior results while preserving architectural simplicity. Rather than combining multiple models, the
proposed approach achieves excellence through intelligent hyperparameter selection, highlighting the practical power of
evolutionary optimization for IDS design.

C. Strengths and Limitations

The GA-based 1D-CNN approach offers several significant strengths:

First, it demonstrates superior accuracy and reliability across multiple benchmark datasets, confirming its robustness
and adaptability to varying network conditions and attack patterns.

Second, it achieves high precision and recall, ensuring effective intrusion detection with minimal false positives and
negatives—an essential characteristic for operational IDS deployment.

Third, the systematic hyperparameter optimization using GA allows the model to discover the most efficient
architecture and learning configuration without manual intervention. This reduces human bias and enhances
reproducibility.
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Despite these advantages, certain limitations exist. The GA introduces computational overhead due to its iterative
nature and the need to train multiple models during optimization. Although this cost is offset by the performance gains,
practical implementations may require parallelization or cloud-based computing resources. Additionally, as with most
machine-learning systems, performance can be dataset-dependent, meaning that optimal hyperparameters for one network
environment may not directly transfer to another. Lastly, class imbalance in IDS datasets remains a persistent challenge.
While the GA-optimized model performs well under such conditions, integrating techniques like data resampling or cost-
sensitive learning could further strengthen detection of minority attack classes.

7. CONCLUSION

This study presented a Genetic Algorithm-based framework for hyperparameter optimization in one-dimensional
convolutional neural-network models for network intrusion detection. By systematically exploring the hyperparameter
search space through evolutionary principles of selection, crossover, and mutation, the GA efficiently identified near-
optimal configurations that significantly enhanced model performance across multiple benchmark datasets.

The proposed GA-optimized 1D-CNN achieved outstanding accuracy, precision, recall, and F1-scores on the UNSW-
NB15, CIC-IDS2017, and NSL-KDD datasets, outperforming conventional CNN-based intrusion-detection models that
rely on manually tuned parameters. These results underscore the critical role of automated hyperparameter optimization
in improving the reliability and robustness of deep-learning-based intrusion-detection systems.

In addition to its high detection capability, the GA-optimized model demonstrated strong generalization and
adaptability across diverse network environments and attack categories. This highlights its practical applicability in real-
world cybersecurity contexts, where attack patterns and traffic distributions constantly evolve.

Despite its effectiveness, the GA-based optimization approach introduces additional computational overhead due to
iterative model training. Future work may address this limitation by incorporating parallel GA implementations or hybrid
optimization strategies that combine GA with other search techniques to accelerate convergence. Furthermore, extending
the model to multiclass classification and online learning scenarios could enhance its operational value in dynamic
network settings.

In summary, the research confirms that Genetic Algorithm-driven hyperparameter optimization offers a powerful and
flexible solution for designing next-generation, high-performance intrusion-detection systems. By uniting the adaptability
of evolutionary computation with the learning capacity of deep neural networks, this approach contributes a significant
advancement toward more secure, intelligent, and resilient network-defense mechanisms.

REFERENCES

[1] Kilichev, D.; Kim, W. Hyperparameter Optimization for 1D-CNN-Based Network Intrusion Detection Using GA
and PSO. Mathematics 2023, 11, 3724. https://doi.org/10.3390/math11173724

[2] Kilichev, D.; Turimov, D.; Kim, W. Next-Generation Intrusion Detection for IoT EVCS: Integrating CNN, LSTM,
and GRU Models. Mathematics 2024, 12, 571. https://doi.org/10.3390/math12040571

[3] Makhmudov, F.; Kilichev, D.; Giyosov, U.; Akhmedov, F. Online Machine Learning for Intrusion Detection in
Electric Vehicle Charging Systems. Mathematics 2025, 13, 712. https://doi.org/10.3390/math13050712

[4] A. Abdusalomov, D. Kilichev, R. Nasimov, I. Rakhmatullayev and Y. I. Cho, "Optimizing Smart Home Intrusion
Detection with Harmony-Enhanced Extra Trees," in IEEE Access, doi: 10.1109/ACCESS.2024.3422999

[5] Selvarajan, P.; Salman, R.; Ahamed, S.; Jayasuriya, P. Networks Intrusion Detection Using Optimized Hybrid
Network. In Proceedings of the 2023 International Conference on Smart Computing and Application (ICSCA), Hail,
Saudi Arabia, 5-6 February 2023; pp. 1-6.

[6] Kanna, R.P.; Santhi, P. Unified Deep Learning approach for Efficient Intrusion Detection System using Integrated
Spatial-Temporal Features. Knowl.-Based Syst. 2021, 226, 107132.

[7] Zhao, X.; Su, H.; Sun, Z. An Intrusion Detection System Based on Genetic Algorithm for Software-Defined
Networks. Mathematics 2022, 10, 3941.

[8] Yang, L.; Shami, A. A Transfer Learning and Optimized CNN Based Intrusion Detection System for Internet of
Vehicles. In Proceedings of the ICC 2022—IEEE International Conference on Communications, Foshan, China, 11—
13 August 2022; pp. 2774-2779.

[9] Chen, Y.; Lin, Q.; Wei, W.; Ji, J.; Wong, K.C.; Coello, C.A. Intrusion detection using multi-objective evolutionary
convolutional neural network for Internet of Things in Fog computing. Knowl.-Based Syst. 2022, 244, 108505.

[10] Ragab, M.; Sabir, F. Outlier detection with optimal hybrid deep learning enabled intrusion detection system for
ubiquitous and smart environment. Sustain. Energy Technol. Assess. 2022, 52, 102311.

179 | INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY
www.multijournals.org


http://www.multijournals.org/
https://doi.org/10.3390/math11173724
https://doi.org/10.3390/math12040571
https://doi.org/10.3390/math13050712

[11]Yan, F.; Zhang, G.; Zhang, D.; Sun, X.; Hou, B.; Yu, N. TL-CNN-IDS: Transfer learning-based intrusion detection
system using convolutional neural network. J. Supercomput. 2023, 242

[12] Okey, O.D.; Melgarejo, D.C.; Saadi, M.; Rosa, R.L.; Kleinschmidt, J.H.; Rodriguez, D.Z. Transfer Learning
Approach to IDS on Cloud IoT Devices Using Optimized CNN. IEEE Access 2023, 11, 1023-1038.

[13] EI-Ghamry, A.; Darwish, A.; Hassanien, A.E. An optimized CNN-based intrusion detection system for reducing risks
in smart farming. Internet Things 2023, 22, 100709.

[14] Rosay, A.; Riou, K.; Carlier, F.; Leroux, P. Multi-layer perceptron for network intrusion detection: From a study on
two recent data sets to deployment on automotive processor. Ann. Telecommun. 2022, 77, 371-394.

[15] Obeidat, A.; Yagbeh, R. Smart Approach for Botnet Detection Based on Network Traffic Analysis. J. Electr. Comput.
Eng. 2022, 2022, 3073932.

[16]Zhang, X.; Zou, D.; Shen, X. A Novel Simple Particle Swarm Optimization Algorithm for Global
Optimization. Mathematics 2018, 6, 287.

[17] Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-
NB15 network data set). In Proceedings of the 2015 Military Communications and Information Systems Conference
(MIICIS), Canberra, Australia, 10-12 November 2015; pp. 1-6.

[18] Sharafaldin, I.; Habibi Lashkari, A.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and
Intrusion Traffic Characterization. In Proceedings of the 4th International Conference on Information Systems
Security and Privacy—ICISSP, Funchal, Portugal, 22—24 January 2018; pp. 108-116.

[19] Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings
of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON,
Canada, 8-10 July 2009; pp. 1-6.

[20] Gautam, S.; Henry, A.; Zuhair, M.; Rashid, M.; Javed, A.R.; Maddikunta, P.K.R. A Composite Approach of Intrusion
Detection Systems: Hybrid RNN and Correlation-Based Feature Optimization. Electronics 2022, 11, 3529.

[21] Preuveneers, D.; Rimmer, V.; Tsingenopoulos, I.; Spooren, J.; Joosen, W.; llie-Zudor, E. Chained Anomaly Detection
Models for Federated Learning: An Intrusion Detection Case Study. Appl. Sci. 2018, 8, 2663.

[22] Potluri, S.; Ahmed, S.; Diedrich, C. Convolutional Neural Networks for Multi-class Intrusion Detection System. In
Proceedings of the Mining Intelligence and Knowledge Exploration, Cluj-Napoca, Romania, 20—22 December 2018;
Groza, A., Prasath, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 225-238.

[23] Azizjon, M.; Jumabek, A.; Kim, W. 1D CNN based network intrusion detection with normalization on imbalanced
data. In Proceedings of the 2020 International Conference on Artificial Intelligence in Information and
Communication (ICAIIC), Fukuoka, Japan, 19-21 February 2020; pp. 218-224.

[24] Gamal, M.; Abbas, H.M.; Moustafa, N.; Sitnikova, E.; Sadek, R.A. Few-Shot Learning for Discovering Anomalous
Behaviors in Edge Networks. Comput. Mater. Contin. 2021, 69, 1823-1837.

[25] Al-Turaiki, I.; Altwaijry, N. A Convolutional Neural Network for Improved Anomaly-Based Network Intrusion
Detection. Big Data 2021, 9, 233-252.

[26] Mohammadpour, L.; Ling, T.C.; Liew, C.S.; Aryanfar, A. A mean convolutional layer for intrusion detection
system. Secur. Commun. Netw. 2020, 2020, 8891185.

[27] Aldarwbi, M.Y.; Lashkari, A.H.; Ghorbani, A.A. The sound of intrusion: A novel network intrusion detection
system. Comput. Electr. Eng. 2022, 104, 108455.

[28] Qazi, E.U.H.; Almorjan, A.; Zia, T. A One-Dimensional Convolutional Neural Network (1D-CNN) Based Deep
Learning System for Network Intrusion Detection. Appl. Sci. 2022, 12, 7986.

[29] Ding, Y.; Zhai, Y. Intrusion detection system for NSL-KDD dataset using convolutional neural networks. In
Proceedings of the 2018 2nd International Conference on Computer Science and Atrtificial Intelligence, Shenzhen,
China, 8-10 December 2018; pp. 81-85.

[30] Zhang, X.; Ran, J.; Mi, J. An Intrusion Detection System Based on Convolutional Neural Network for Imbalanced
Network Traffic. In Proceedings of the 2019 IEEE 7th International Conference on Computer Science and Network
Technology (ICCSNT), Dalian, China, 19-20 October 2019; pp. 456—-460.

[31] Verma, A.K.; Kaushik, P.; Shrivastava, G. A Network Intrusion Detection Approach Using Variant of Convolution
Neural Network. In Proceedings of the 2019 International Conference on Communication and Electronics Systems
(ICCES), Coimbatore, India, 17-19 July 2019; pp. 409-416.

[32]Li, Y.; Xu, Y.; Liu, Z.; Hou, H.; Zheng, Y.; Xin, Y.; Zhao, Y.; Cui, L. Robust detection for network intrusion of
industrial 10T based on multi-CNN fusion. Measurement 2020, 154, 107450.

[33] Yang, H.; Wang, F. Wireless Network Intrusion Detection Based on Improved Convolutional Neural Network. IEEE
Access 2019, 7, 64366-64374.

[34]Khan, R.U.; Zhang, X.; Alazab, M.; Kumar, R. An Improved Convolutional Neural Network Model for Intrusion
Detection in Networks. In Proceedings of the 2019 Cybersecurity and Cyberforensics Conference (CCC), Melbourne,
Australia, 8-9 May 2019; pp. 74-77.

[35] Wang, H.; Cao, Z.; Hong, B. A network intrusion detection system based on convolutional neural network. J. Intell.
Fuzzy Syst. 2020, 38, 7623-7637.

180 | INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY
www.multijournals.org


http://www.multijournals.org/

[36] Wang, X.; Yin, S.; Li, H.; Wang, J.; Teng, L. A network intrusion detection method based on deep multi-scale
convolutional neural network. Int. J. Wirel. Inf. Netw. 2020, 27, 503-517.

[37]1Jo, W.; Kim, S.; Lee, C.; Shon, T. Packet Preprocessing in CNN-Based Network Intrusion Detection
System. Electronics 2020, 9, 1151.

[38] Hu, Z.; Wang, L.; Qi, L.; Li, Y.; Yang, W. A Novel Wireless Network Intrusion Detection Method Based on Adaptive
Synthetic Sampling and an Improved Convolutional Neural Network. IEEE Access 2020, 8, 195741-195751.

[39] Akhtar, M.S.; Feng, T. Deep learning-based framework for the detection of cyberattack using feature
engineering. Secur. Commun. Netw. 2021, 2021, 6129210.

[40] Zhang, H.; Huang, L.; Wu, C.Q.; Li, Z. An effective convolutional neural network based on SMOTE and Gaussian
mixture model for intrusion detection in imbalanced dataset. Comput. Netw. 2020, 177, 107315.

[41] Meliboev, A.; Alikhanov, J.; Kim, W. Performance Evaluation of Deep Learning Based Network Intrusion Detection
System across Multiple Balanced and Imbalanced Datasets. Electronics 2022, 11, 515.

[42] Altunay, H.C.; Albayrak, Z. A hybrid CNN+LSTM-based intrusion detection system for industrial 10T
networks. Eng. Sci. Technol. Int. J. 2023, 38, 101322.

[43] Thilagam, T.; Aruna, R. LM-GA: A Novel IDS with AES and Machine Learning Architecture for Enhanced Cloud
Storage Security. J. Mach. Comput. 2023, 3, 69-79.

[44] Karthic, S.; Kumar, S.M. Hybrid Optimized Deep Neural Network with Enhanced Conditional Random Field Based
Intrusion Detection on Wireless Sensor Network. Neural Process. Lett. 2023, 55, 459-479.

[45] Khan, A.S.; Ahmad, Z.; Abdullah, J.; Ahmad, F. A Spectrogram Image-Based Network Anomaly Detection System
Using Deep Convolutional Neural Network. IEEE Access 2021, 9, 87079-87093.

[46] Mendonga, R.V.; Teodoro, A.A.M.; Rosa, R.L.; Saadi, M.; Melgarejo, D.C.; Nardelli, P.H.J.; Rodriguez, D.Z.
Intrusion Detection System Based on Fast Hierarchical Deep Convolutional Neural Network. IEEE Access 2021, 9,
61024-61034.

[47]1Bowen, B.; Chennamaneni, A.; Goulart, A.; Lin, D. BLoCNet: A hybrid, dataset-independent intrusion detection
system using deep learning. Int. J. Inf. Secur. 2023, 22, 893-917.

[48] Li, S.; Li, Q.; Li, M. A Method for Network Intrusion Detection Based on GAN-CNN-BIiLSTM. Int. J. Adv. Comput.
Sci. Appl. 2023, 14, 507-515.

[49] Nguyen, M.T.; Kim, K. Genetic convolutional neural network for intrusion detection systems. Future Gener. Comput.
Syst. 2020, 113, 418-427.

[50] Bhuvaneshwari, K.S.; Venkatachalam, K.; Hubalovsky, S.; Trojovsky, P.; Prabu, P. Improved Dragonfly Optimizer
for Intrusion Detection Using Deep Clustering CNN-PSO Classifier. Comput. Mater. Contin. 2022, 70, 5949-5965.

181 | INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY
www.multijournals.org


http://www.multijournals.org/

