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Abstract:

In this study, the adsorption capacity of single-walled carbon nanotubes (CN Ts based on
cyclopentadienyl iron dicarbonyl dimer) arrays towards pure N2 gas was investigated
experimentally and computationally at 77 K and in the pressure range from 0.01 to 1 atm. The
experimental work represents gravimetric surface excess adsorption measurements of each gas
studied on this nanomaterial. Commercial samples of CNTs based on pure CNTs, which were
systematically prepared and initially characterized, were used to evaluate their adsorption capacity.
The BET (Brunauer-Emmett-Teller) equation was adopted to estimate the overall adsorption
isotherm based on the experimental surface excess adsorption data for each studied system.
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Introduction.

Global warming and its consequences are compelling humanity to take serious measures. Emissions
of gases such as nitrogen and carbon oxides are harmful to the environment and health.
Simultaneously, the increasing energy demand and depletion of fossil fuel reserves necessitate the
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development of new energy strategies.The utilization of physical and chemical adsorption on solid
sorbents in Hz and other gas storage technologies is an effective method. The sorbent must possess
properties such as high adsorption capacity, chemical stability, low cost, and lightness. For instance,
porous materials with a high surface area are advantageous for the efficient storage of H.. Carbon
nanotubes (CNTSs) are acknowledged as promising materials for H> storage, CO> capture, and the
separation of gas mixtures. Conversely, the rapid growth of energy demand and the gradual
depletion of fossil fuel reserves underscore the need for the development of new strategies for
energy source production and utilization of their energy content.

Cyclopentadienyliron dicarbonyl dimer is an organometallic compound with the formula [(;°-
CsHs)Fe(CO)2]2, often abbreviated to CpzFe2(CO)s, [CpFe(CO)2]2 or even Fp2, with the colloquial
name "fip dimer”. It is a dark reddish-purple crystalline solid, which is readily soluble in moderately
polar organic solvents such aschloroform and pyridine, but less soluble in carbon
tetrachloride and carbon disulfide. Cp2Fe2(CO)sis insoluble in but stable toward water.
Cp2Fe2(CO)4 is reasonably stable to storage under air and serves as a convenient starting material
for accessing other Fp (CpFe(CO).) derivatives (described below).

Discussion and Results.

The investigation and characterization of nitrogen adsorption represent a dynamic area of scientific
inquiry. This holds particular significance for the advancement of novel materials with enhanced
properties. Characteristics such as surface area, porosity, and pore size serve as pivotal factors in
molding the functional attributes of materials. They exert a significant influence on adsorption
capacity, activity, and stability[1].

Utilizing the Quantachrome® ASiQwin™- Automated Gas Sorption version 5.21 device, we
conducted a study on carbon nanotubes synthesized based on cyclopentadienyl iron dicarbonyl
dimer. (Table 1-2)

Analysis Report
Operator 1 File name Carbon nanotube
Date 20.09.2024 Instrument Autosorb iQ Station 2
Sample Weight 0.0173 g Outgas Temp 120 °C
Outgas Time 1.0 hrs Non-ideality 6.58e-05 1/Torr
Analysis gas Nitrogen Bath temp 77.35 K
Analysis Time 3:14 hr:min Cold Zone V 1.73258 cc
Analysis Mode Standard CellType 9mm w/o rod
VoidVol. Mode He Measure Warm Zone V 15.1206 cc
(Table -1)
ANALYSIS Report
OPERATOR 1 File name Nanotrubka-2.qps
DATE 20.09.2024 Instrument Autosorb iQ Station 2
SAMPLE WEIGHT 0.003 g Outgas Temp 120 °C
OUTGAS TIME 1.0 hrs Non-ideality 6.58e-05 1/Torr
ANALYSIS GAS Nitrogen Bath temp 77.35 K
ANALYSIS TIME 3:09 hr:min Cold Zone V 1.73454cc
ANALYSIS MODE Standard CellType 9mm w/o rod
VOIDVOL. MODE He Measure Warm Zone V 16.6087 cc
(Table -2)

Accordingly, the nitrogen adsorption characteristics of carbon nanotubes based on cyclopentadienyl
iron dicarbonyl dimer are disclosed. The analysis reveals a substantial potential for nitrogen
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adsorption. Furthermore, it was observed that the resultant carbon nanotube-1 possesses a BET
(Brunauer-Emmett-Teller) surface area of 65.9558 m?/g, an average pore diameter of 6.259 A, and
an adsorption volume of 1.632 cm?3/g. Conversely, Nanotube-2 exhibits a BET surface area of
357.0415 m?g, an average pore diameter of 0.697 A, and an adsorption volume of 6.933 cm3/g. The
elimination of additives from the nanotube composition evidently led to a substantial increase in
both the surface area and adsorption volume of the nanotubes. Tables 1-2-3 and Figures 1-2 provide
essential parameters such as surface area, pore size, and their size distribution. These parameters
were determined utilizing the appropriate adsorption isotherm models.

At relative pressure
(P/P0=0-0.02) Carbon nanotube-1 Carbon nanotube-2
Seet, m?/g 65.9558 357.0415
t-Plot Micropore Area, m?/g 56.1923 143.7773
t-Plot external surface area, m?/g 101.9197 390.5442
Cumulative surface ag]ez%of mesopores (BJH), 103.6722 452 6063
t-Plot micropore volume, cm?3/g 1.632 6.933
Mesopores cumulative volume, cms3/g 0.010320 0.006223
Maximum pore volume (HK), cm3/g 0.016347 0.028494
Average pore diameter (4V/A by BET), A 6.259 A 0.697 A
Median pore width, A 14.401 17.250
Average pore hydraulic radius (V/A by MP 10.1093 A 105295
method), A

(Table -3)
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Figure- 2.

The shape of the isotherm indicates a type IV classification, suggesting a mesoporous structure.
This type of isotherm is particularly suitable for materials undergoing capillary condensation. The
upward trend of the isotherm curves at higher relative pressures signifies the existence of large
macropores within the structure. Describing the adsorption mechanism in porous materials becomes
feasible through this analysis. Additionally, the presence of hysteresis is noted in the nanotube
isotherm (Figure 1-2). While various forms of hysteresis loops have been documented, the primary
types, namely H1, H2, H3, H4, and H5 as listed by IUPAC [2], correspond to the H3 type of
hysteresis observed in the isotherm curves displayed in Figure 1-2. This particular type, although
uncommon, features open and partially obstructed mesopores with a distinct shape associated with
certain porous structures [3]. Initially, within the isotherm curve (p/p0 ~ 0.4 - 0.5 for nitrogen at 77
K), a linear nitrogen absorption increase is evident, signifying the saturation of the microporous
structure [4].

The nitrogen adsorption rises as the relative pressure nears p/p° -1, indicating capillary
condensation in meso- and macropores. The steep ascent in these curves points towards the
presence of significant pores [5].

Consequently, the adsorption-desorption curves for carbon nanotubes synthesized based on
Cyclopentadienyl iron dicarbonyl dimer reveal heterogeneous N2 adsorption characteristics in the
structure, showcasing the existence of meso- and macropores.
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Conclusion.

The analysis revealed that the synthesized Nanotube-1 exhibited a BET (Brunauer-Emmett-Teller)
surface area of 65.9558 m2/g, an average pore diameter of 6.259 A, and an adsorption volume of
1.632 cms3/g. Following treatment of the nanotubes with a mild acid solution at varying
temperatures, Nanotube-2 displayed a BET surface area of 357.0415 m?#/g, an average pore diameter
of 0.697 A, and an adsorption volume of 6.933 cm3/g. It is evident that the elimination of metal
compounds obstructing gas absorption in the mesopores resulted in a reduction in the average pore
diameter. Moreover, the removal of additives from the nanotubes led to a substantial increase in
both the surface area and adsorption volume of the nanotubes.

Furthermore, the adsorption-desorption curves illustrated the heterogeneous N2 adsorption structural
characteristics of carbon nanotubes fabricated based on Cyclopentadienyl iron dicarbonyl dimer,
showecasing the presence of meso- and macropores.
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