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Solving Parabolic Equations with Arbitrary
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A method for applying the straight-line technique by transforming a problem with arbitrary linear
boundary conditions into a Dirichlet problem is developed. Assuming the boundary values of the
desired function are given, the Dirichlet problem is solved. The actual boundary values of the
desired functions are found by aligning the assumed boundary values with the newly obtained
values according to boundary condition approximations. These values are then used to implement
the straight-line method, ensuring second-order accuracy for equation and boundary condition
approximations.
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Introduction

The numerous modifications of the finite difference method used for numerically solving single-
and multi-dimensional equations of mathematical physics are considered approximate methods. On
one hand, this is associated with the approximation of equations and boundary conditions to a
certain degree of accuracy. On the other hand, solving finite difference equations is of an
approximate nature, as methods such as discretization, variable direction, predictor-corrector, and
others do not provide an exact solution but rather an approximation to it. Within the framework of
solving constructed finite difference equations, the straight-line method is more efficient, as it
ensures the accuracy of solutions to finite difference equations within the precision limits of
machine calculations. In the works of V.N. Faddeeva [1] and S. Karimberdiyeva [2], algorithms for
applying the straight-line method to solve elliptic, parabolic, and hyperbolic types of two- and
three-dimensional equations under various boundary conditions have been proposed. Unfortunately,
only auxiliary matrices used for solving Dirichlet problems were provided, and no information was
given regarding these matrices for other boundary conditions. Auxiliary matrices—comprising
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fundamental and diagonal matrices—consist of eigenvalues and eigenvectors that transition from
the differential operator to the finite difference operator and tri-diagonal matrix numbers. In certain
works by the authors of this scientific report, auxiliary matrices for mixed boundary conditions of
the first and second types have been developed. An algorithm for solving the eigenvalue and vector
problem of the Dirichlet problem for the parabolic equation is presented in [3]. It has been proven
that the double inequality for the eigenvalues is valid.

Methodology
The eigenvalues of the transition matrix to finite difference equations,

ﬂﬂ'} The eigenvalues of the transition matrix to finite difference
2(N +1)

equations have been determined in a specific form, and the elements of the eigenvectors have been
identified, where 0 and N+1 denote the numbers of the boundary nodes of the segment. We can
continue the work on applying the straight-line method for other combinations of boundary
conditions. Each time, new auxiliary matrices are constructed based on the developed transition
matrices. The question arises: Is it possible to construct a universal algorithm for solving problems
with arbitrary combinations of linear boundary conditions? Below, a positive answer to this
question is provided, along with methods for approximating equations and various boundary
conditions with second-order accuracy when solving problems for parabolic equations, including
the Dirichlet problem using auxiliary matrices. To avoid confusion in describing the algorithm, a
one-dimensional inhomogeneous parabolic equation is taken as the object of application. The main
factors are explained within the framework of classical heat transfer theory. The essence of the
method is as follows: Initially, the problem is solved by assuming the boundary values of the
desired function are given. Subsequently, the relationships between the assumed and newly
obtained boundary values of the desired function are constructed in accordance with the boundary
conditions. Based on these relationships, the boundary values of the function are determined using
the straight-line method within the framework of the Dirichlet problem. The method can also be
applied when the equations and boundary conditions are linear.

S

A =—2(1+ coS

The heat transfer equation can be expressed as:
or 22 o°T
ot Ox?

The equation is accepted in the following form, where:

+ f(xt)

v' a?is the average thermal conductivity coefficient of the material,

v f (x,t) represents the total power of internal and external heat sources at position x and time t,
considering the material's density and specific heat capacity.

We assume that the temperature values are given at the boundaries.
T(0,t) = (1),
T(1Lt)=p4(t)

The Dirichlet problem is stated in this way. The right-hand side of the condition £, (t) Ba L (t)
functions are sought quantities whose values are then determined for other boundary conditions.

Flat mesh
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:(xi:ih, 1=0,1..,N,N+1L h= | j
N +1

U; (t) and f; (t) mesh functions are introduced.

The equation is approximated with second-order accuracy in the x-coordinate at the internal nodes
of the computational domain grid [30]:

n+l 2
du™ _a sl

m hz( n+l 2un+1+u )+ fn+1

i+1

n+1 n+1
In such cases, assumptions are made at the boundary nodes 4 and 4  boundary conditions
are implemented:

dun+1 a2

1 . (ﬂn+l 2un+1 +un+1) f1n+1

dt !

1 2

du’r\1‘+ a ( n+l 2un+1+ n+1)_|_ fn+1
From the presented differential-difference equations, we:
du a?
e :FAU +F (1.1.1)
construct a matrix equation of the form:
byepra U = (™, u3™,.., ui, ul?)

-2 1 0 0 .. 0 0 O
1 -2 1 0 .. 0 O O
o 1 -21 ..0 O O
A:Hap,QHN -
o 0o O o0 .1 -2 1
o o o o0 .0 1 -2

N

Here, the indices of the unknowns and the matrix elements vary from 1 to N, and the "*" symbol
denotes the matrix transposition operation.

Results and discussion

Equation (1.1.1) must be presented in a form that allows transitioning to autonomous equations with
respect to the individual unknowns.

Let us refer to the materials in [2] and:

A=BAB™
assume that B represents the elements where:

77 | INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY www.multijournals.org



s+ 2 . TSP
b, =(-1)"
>P (1) N+1smN+1

A consists of a fundamental matrix similar to A;

- with elements:
A

/13:—2(1+cos 7S j
N+1

diagonal matrix consisting of ;

B~'- elements b, , =D, , consisting of B is the inverse matrix of,

We multiply both sides of the equation (3.1.1) from the left by and B

=1 2
a8"U -2 B'AU+B'F
dt  h

we get the equality
We introduce a new column vector

B =BU=U=(d, G,.., Uy, Ty) =

*

[Zblpup’ inP pr*” i:lb —1P p’ ZbNP P} !

A=BAB™ for this
BAU =B'BAB U =(B—1B)A(B-lu):

Then Eq
du a?
e FAU +F (1.1.2)

takes the form

here

*

F=B'F=BF=(f, f,,... fi,, f) =

n+ 2 n+ n+ Nt a2 N
:[b1,1£f1 L+ zluo lj"'zbl f, o+ (fN 1"'?/4 1],
a2
bz,l(flml n+1j+zb2r frn+1 (f’\zwl_'_Fﬂlnﬂ]’m’
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-1 2
a
n+1 n+1 n+1 n+1 n+1
bN—1,1£f1 ]"‘ b —1rfr by 1,N[fN +h2 H j’
r=2

n+ n+ n+ Nt a2 na )
bN,l[fl e+ 2:“0 1j+ZbNrfr L+ (fN l"'F/‘l le .

(1.1.2) from U; a separate simple equation can be distinguished with respect to:
—— =AU +f (1.1.3)

The initial condition for this equationis U = B™U = BU according to equality

Z'p P,

We solve equation (1.1.3) numerically. The second-order accuracy of the approximation in time can
be established. For simplicity of the statement, we use the backtracking scheme and introduce
superscripts in time:

U'n+l B U'n 3.2 —=n+1 n+1

: = _Zﬂ"lui + fi

T, h
here
_ u"+z £ _
uin+l i n'i — dI (uin +Tn .l:ln+l)
Z'n 2
_F ﬂ’l

we find . Here

d. =1/(1—T—”2a22,,j
-

we introduced the definition.

n+1 n+l n+1 n+1 n+1 n+1
UM =BU"™ =(u", up™,..., ug’, ut)=

Zb1 —n+1 sz —n+1’m ZbN 1p_;+1 ZbN p—Fr)1+1 .

Using the formula, we perform the inverse transition to the desired temperature function for the new
time.

Now we establish the relationship between the predicted values of the desired function at the
boundary and the newly found values of the function at the wall nodes, that is, we implement the
boundary conditions.
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We are interested in cases where the derivative of the desired function is involved in at least one
boundary condition. And in general, we assume that, along with the boundary value of the desired
function, the directed derivatives of the second order of approximation involving the values of the
function at two neighboring nodes in the finite-difference equation are implemented.

In general, the condition is accepted x=0

ot = o + Uy + 6, (1.1.4)
X =1 here
n+l __ n+1 n+1 9
Ly =oqUy +ﬂ|uN—1 +6, (1.1.5)

are accepted, they represent the approximation of the boundary conditions with second-order

accuracy. Perhaps a,, f,, 6,, &, ,5|, &, The values of the coefficients may depend on time.

The values found by the straight line method and Uy, U,, Uy_; and Uy we reveal the values of
as follows

N N
n+l n+l =n Fnl)
u _Z; GOt = d, (T 47, F) =
p= p=
— £ n+l
Zblp pp +T Zbl pdpfp

= a
n+l n+1 n+1 n+1 n+1 n+1
fp _bp,l fl /uo +prrf p,N fN +F:ul
For this reason

Zblp p p+TZblp p :1 f1n+1 h 'u(r)Hl +

2

N-1
a
n+l n+l n+l
+Z;‘bprfr +b, x| e
r=

n+1 Ty a n+1 Ty a
i,p~pl i,p~p,N"p
N N N
—n n+1
+Zbi,pdpup+rnZZbi,pbp,rdpfr -
p=1 p=1 r=1

We set the values of this grid function to approximations of the boundary conditions in the
corresponding indices.
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From the first condition

o "= o +la‘o + ﬂ|n+1bo +Gp.
originates. Here
2 N 2 N
aO = Tnh? Z(aobl,p+ﬂ0b2,p)bp,ldp’ bO :T;]? (aobl +IBO Zp) pN p?’
p=1 p=1
N N N
Z(%b1 + b, . )d, T +fnzlzl(aob1 + B, , )b, d, £+ 6,
p=1 p=l r=

We use the notations
We do the same with the second condition and

4= 108+ G,

we get the equality, where:
raty ra®d

a == pz;(a,bN,pw,bN_l’p)prdp, b == pz;(a,prw,bN_l’p)bp,Ndp,
N N N

c, = Z;(a, Oy p + Ay, )d,T +rnz;z;(a, by + Aby )0, A, F 7+ 6.
p= p=l r=

We form a system of two newly obtained linear equations

(1 ao) - OlLl| Coy
alﬂg+l (1—b| )luln+ =, (1.1.6)

The determinant of the main matrix of this system

=(1-2)(1-b)-ab,

We assume that has a non-zero value. In this case, for the boundary values of the function we are
looking for,

1 1
et = A[(1—b,)c0 +hc | ™ =K[a,c0 +(1-ay)c .

we will have .

The found boundary values of the sought function include only certain elements of the fundamental
and diagonal matrices, as well as elements of the boundary conditions of the given problem. They

satisfy the boundary conditions. Only from the convergence of boundary conditions &, ,Bo, ,

a,, ,B| v Q) It remains to determine the values of the coefficients.
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We will focus on the boundary condition, which in classical heat transfer theory is called the fourth
kind of boundary condition and which simultaneously generalizes the second and third kind of
conditions.

aT(Ot

a2\ 50[ Ot)}+goRo(t),

ATY et -1 (L] aR (1)

We write it in the form and apply a second-order approximation to it.

1 1 1
3/un+ 4un+ +un+ _ 50 (T n+1 n+1) go Rn+1
=\l —Ho
2h A
2hA we multiply the equation and condense the like terms

(34+2N&,)) g™ = 42U — Aug™ + 20 (4T + g R0™)

Here we pass to the form of the previously accepted condition (3.1.4), for which we determined the
values of the coefficients:

S S S 2h(&T +oRe™)
° 31+2h&" 0 32+2hg" ° 31+2hs,

A similar application of the directed derivatives to the second condition leads to the finite-
difference equation

3/” 4U o + U n+l §| n+1 n+1 gl n+1
2h I(Toc —H )_ERI

Getting rid of the denominators and compressing like terms leads to the values of the coefficients of
the condition (1.1.5):

1 1
- 42 B = A 0 - (;Tn+ +6 R )
'32+2hg T T 3a+2hg " 31+2hE
For the case of the largest volume of calculations for boundary conditions of the fourth type, we

n+1 1 . . . .
Hy Ba ,U|n+ we have presented a variant of the formation of . In other combinations of boundary

conditions, the formulas for the coefficients are reduced. For example, if X =0 na if the condition of
the first type is given, then the first equation (1.1.6) is dropped from the system of equations, and so
on. Taking this into account, when solving a certain boundary value problem of system (1.1.6).

n+l 1 . . . . . .
Ho Ba N.m It is advisable to repeat the solutions for the , which will reduce the calculation

time.

Conclusion
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The Method of Straight Lines (MSL) is a numerical technique used for solving parabolic partial
differential equations (PDESs) with arbitrary linear boundary conditions. In this method, the solution
is advanced along straight lines in the computational domain, and the boundary conditions are
incorporated at each step to ensure the accuracy of the solution. In conclusion, the Method of
Straight Lines provides a robust approach for solving parabolic equations, particularly in cases with
arbitrary linear boundary conditions. By transforming the problem into a series of simpler, linearly-
aligned subproblems, this method simplifies the computational process and enhances its efficiency.
The flexibility of incorporating various boundary conditions makes it a versatile tool for handling
different types of parabolic PDEs in diverse applications. Its ability to provide accurate
approximations even in complex geometries highlights its potential for practical use in scientific
and engineering problems involving heat transfer, diffusion processes, and similar phenomena.
However, the effectiveness of the method depends on careful implementation and the choice of
numerical discretization, as errors can accumulate over time.
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