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 Abstract:  

 

Wireless capsule endoscopy (WCE) produces long, variable-quality video streams in which early and 

reliable polyp detection is critical. We present YOLO-InceptionResNet-A, a lightweight object detector 

that replaces the standard YOLOv4-tiny backbone with an Inception-ResNet-A block to enrich multi- 

scale feature representation while preserving real-time efficiency. The proposed pipeline operates in 

two stages: (i) a frame-level screening classifier to filter normal/abnormal images, and (ii) the detector 

for precise polyp localization. To respect clinical color sensitivity, we adopt conservative, clinically 

aware augmentation (brightness and mild hue jitter), alongside standard normalization. We evaluate on 

the Kvasir family of WCE images using patient-level splits and report object-detection metrics 

(mAP@0.5, mAP@[.5:.95], precision/recall/F1, and IoU), frame-level classification metrics (AUROC, 

sensitivity, specificity), and throughput on a single RTX 3090 GPU. Across benchmarks, our backbone 

swap consistently improves detection mAP and recall over YOLOv3, YOLOv4, and YOLOv4-tiny 

baselines, while maintaining low latency suitable for real-time review. Ablation studies isolate the 

contributions of the Inception-ResNet-A backbone and the augmentation policy, demonstrating that 

richer multi-scale features are the primary driver of the gains. We discuss limitations related to dataset 

size and domain shift, and outline external validation on additional WCE datasets as future work. These 

results indicate that targeted backbone re-architecture can deliver lightweight yet precise WCE polyp 

detection without sacrificing speed—an attractive trade-off for clinical deployment. 
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1.  Introduction 

Keywords: Wireless Capsule Endoscopy (WCE), Polyp Detection, Object Detection, 

YOLO/YOLOv4-tiny, Inception-ResNet-A, Lightweight Backbone, Real-Time Detection, Medical 

Image Analysis, Gastrointestinal Endoscopy, Clinical AI. 
 

 

 

 

Wireless capsule endoscopy (WCE) enables non-invasive visualization of the gastrointestinal (GI) tract and has become 

integral to screening and surveillance workflows, particularly for early identification of colorectal lesions such as polyps 

[1,2]. However, WCE produces hours of video per patient, with variable illumination, specular highlights, motion blur, 

bubbles, and debris—factors that increase reader fatigue and the risk of missed findings in routine practice [3,4]. Automated 

computer-aided detection (CADe) and diagnosis (CADx) systems can mitigate this burden by prioritizing suspicious frames 

and localizing lesions for review, provided they meet stringent accuracy and latency requirements compatible with clinical 

use [5]. 

Deep learning has rapidly advanced GI imaging across segmentation, classification, and detection tasks. Encoder– 

decoder architectures (U-Net and its derivatives) dominate segmentation of mucosal structures and polyp boundaries [6–8], 

while convolutional neural networks (CNNs) such as ResNet and Inception-ResNet families remain strong baselines for 

frame-level abnormality classification [9,10]. For real-time localization, one-stage detectors—particularly the YOLO 

family—offer an attractive speed–accuracy trade-off by formulating object detection as a single regression problem [11–13]. 

YOLOv4 and the compact YOLOv4-tiny variant extend this paradigm to resource-constrained settings, but their lightweight 

backbones can under-represent fine, multi-scale textural cues that are critical for subtle, flat, or small polyps in WCE [12,14]. 

Backbone capacity and feature aggregation are central to detector performance. Inception-ResNet blocks combine 

residual learning with multi-branch receptive fields, enhancing the network’s ability to capture scale diversity without 

incurring prohibitive computational cost [10,15]. We hypothesize that selectively upgrading the YOLOv4-tiny backbone with 

an Inception-ResNet-A block can enrich representational power where it matters most—early features and cross-scale 

fusion—while preserving the real-time throughput that makes tiny detectors clinically appealing. 

Datasets for WCE vary in modality (image vs video), annotation granularity (classification labels, bounding boxes, or 

masks), and acquisition conditions. Public resources such as the Kvasir family provide standardized benchmarks and facilitate 

reproducible comparisons under patient-level splits that prevent identity leakage across train/validation/test partitions [16– 

18]. Given the color sensitivity of GI mucosa, augmentation policies must be conservative to avoid unrealistic chromatic 

shifts; small-magnitude brightness and hue jitter, combined with normalization, have been recommended to improve 

robustness without compromising clinical fidelity [19,20]. 

This work. We introduce YOLO-InceptionResNet-A, a lightweight detector for WCE polyp localization that replaces the 

default YOLOv4-tiny backbone module with an Inception-ResNet-A block. Our pipeline comprises: (i) a frame-level 

screening classifier to filter normal vs abnormal frames, and (ii) the detector for precise localization. We evaluate on Kvasir- 

style benchmarks using patient-level splits and report object-detection metrics—mAP@0.5, mAP@[.5:.95], precision, recall, 

and IoU—alongside throughput on a single RTX-class GPU. Ablation studies isolate the contributions of the backbone swap 

and augmentation policy. Our results show consistent gains in mAP and recall over YOLOv3/YOLOv4 baselines at 

comparable latency, supporting the premise that targeted backbone re-architecting can yield lightweight yet precise WCE 

detection suitable for clinical triage and review [11–18]. 

 

2. RELATED WORK 

2.1 Computer-aided analysis in GI endoscopy 

Classical CADe/CADx systems for GI endoscopy span segmentation, classification, and detection. Encoder–decoder 

models such as U-Net and its descendants (U-Net++, ResUNet++) dominate pixel-level segmentation of mucosal boundaries 

and polyps, improving delineation of small and flat lesions through dense skip connections and residual/attention modules 

[1–4]. For frame-level abnormality screening, high-capacity CNNs (e.g., ResNet-50/101, Inception-ResNet-v2) have 

remained strong baselines, benefiting from transfer learning and robust optimization on curated WCE/colonoscopy datasets 

[5,6]. Survey articles highlight practical challenges—illumination change, debris, and motion blur—and stress the need for 

real-time systems with high sensitivity at low false-positive rates to reduce reader fatigue [7,8]. 

2.2 Polyp detection with one-stage detectors (YOLO family) 

One-stage detectors formulate localization as a single regression problem, achieving favorable speed–accuracy trade- 

offs. YOLOv3 provided an early real-time baseline, and YOLOv4 introduced improved training strategies, better data 

augmentation, and a CSPDarknet backbone; YOLOv4-tiny further reduced computation for embedded use [9–12]. 

Subsequent medical-imaging works adapted YOLO variants to colonoscopy/WCE, often reporting strong recall but sensitivity 
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to lesion scale and texture, particularly for diminutive or flat polyps [13–15]. Lightweight deployments emphasize low latency 

on commodity GPUs while maintaining clinically acceptable recall [14,15]. 
2.3 Backbone design and multi-scale feature learning 

Detection quality in tiny models is heavily determined by the backbone and the network’s ability to aggregate multi-scale 

features. Inception-ResNet blocks combine residual learning with multi-branch convolutions, enabling richer receptive-field 

diversity without prohibitive cost [6,16]. In contrast, CSP-style backbones (used in YOLOv4/-tiny) partition feature maps to 

reduce duplication and computation, improving gradient flow and efficiency [11,12]. Medical-imaging adaptations frequently 

report that upgrading early/mid-level feature extractors yields disproportionate gains for subtle textures (vascular patterns, 

mucosal structure) critical in GI lesions [3,13,17]. Our work follows this line by swapping YOLOv4-tiny’s backbone module 

with an Inception-ResNet-A block, aiming to enrich texture/scale cues while preserving speed. 

2.4 Two-stage pipelines for efficiency and reliability 

To manage long WCE videos, two-stage pipelines are common: a fast screening classifier filters normal frames, followed 

by a more precise detector/segmenter on the reduced subset [18–20]. This architecture decreases overall compute and operator 

load while maintaining sensitivity. Prior studies show that such cascades are effective when patient-level splits prevent label 

leakage and when thresholds are tuned to favor recall in stage-1 [18,19]. We adopt this paradigm and report both screening 

and detection metrics. 

2.5 Data, splits, and evaluation protocols 

Public datasets in the Kvasir family support classification, detection, and segmentation across image and video 

modalities. Best practice is to use patient-level train/validation/test splits and to report detection metrics—mAP@0.5, 

mAP@[.5:.95], precision/recall/F1, and IoU—alongside throughput (FPS) and computational footprint for clinical relevance 

[2,7,21]. Several works caution against relying on “accuracy” for detection and emphasize calibration, per-class 

sensitivity/specificity, and confidence-threshold analysis [7,21]. 
2.6 Augmentation and color fidelity in WCE 

Because GI mucosa is color-sensitive, augmentation policies must avoid unrealistic chromatic shifts. Conservative 

brightness and mild hue jitter, vignetting/illumination normalization, and careful rotation/cropping are commonly 

recommended; aggressive color transforms can inflate apparent accuracy while harming external validity [22–24]. Our 

augmentation follows these recommendations. 
Model 

 

3. OVERALL ARCHITECTURE 

This section details the end-to-end pipeline, model components, training protocol, and evaluation settings for the 

proposed detector. We denote the overall system YOLO-InceptionResNet-A (YOLO-IR-A)—a two-stage cascade where 

Stage-1 screens frames (normal vs. abnormal) and Stage-2 performs real-time polyp localization with a tiny YOLO detector 

whose backbone block is swapped for an Inception-ResNet-A (IR-A) module. 

 

A. Problem Setup and System Overview 

Given an RGB WCE frame 𝑥 ∈ ℝ𝐻×𝑊×3, the system returns a set of detections 𝒟 = {(𝑏𝑖, 𝑐𝑖, 𝑠𝑖)}where 𝑏𝑖 = (𝑥, 𝑦, 𝑤, ℎ)is 

a bounding box in image coordinates, 𝑐𝑖 ∈ {polyp}(or background), and 𝑠𝑖 ∈ [0,1]is the confidence. The processing cascade 
is: 

1. Stage-1: Frame Screening. A lightweight classifier estimates 𝑝abn(𝑥). Frames with 𝑝abn(𝑥) ≥ 𝜏are forwarded to 
Stage-2; the rest are dropped or down-prioritized for review. 

2. Stage-2: Detection. A one-stage YOLOv4-tiny detector [11, 12] modified with an IR-A backbone block localizes 

polyps at two scales (1/16 and 1/32 of input resolution). 

This design reduces compute while maintaining high sensitivity, which is crucial for clinical safety in long WCE videos 

[18–20]. The overall pipeline is depicted in Fig. 3. 
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Figure 3: Architecture of the custom version of YOLOv4-tiny 

B. Model Design 

1) Stage-1 Screening Classifier 

Backbone and head. We use a truncated Inception-ResNet-v2 stem [6] up to mixed-layer blocks, followed by global 

average pooling, a 1024-d fully connected layer, and a sigmoid output. We initialize from ImageNet weights, which improves 

convergence on limited WCE data [5, 6]. 

Loss and thresholding. Weighted binary cross-entropy (class weights inverse to class frequency) optimizes frame-level 

abnormality. The operating threshold 𝜏is chosen on the validation set to achieve high recall (target ≥ 0.95) with acceptable 

precision, ensuring suspicious frames are rarely filtered out. 

Hard-negative mining. False positives identified by Stage-2 are cached and periodically replayed in Stage-1 mini-batches 

to sharpen decision boundaries without aggressive augmentation. 

 

2) Stage-2 Detector: YOLO-IR-A 

Base detector. We adopt the YOLOv4-tiny topology (CSP-style tiny backbone + PAN/FPN + two detection heads) for 

real-time constraints [11, 12]. Our change targets the backbone capacity. 

Backbone swap (our contribution). The default tiny CSP-style macro-block between the stem and neck is replaced by an 

Inception-ResNet-A block (see Fig. 4): 

• IR-A structure. Parallel branches process the input with 1 × 1, 3 × 3, and factorized 3 × 3convolutions; outputs are 

concatenated and projected with 1 × 1back to the input channel dimension. A residual path adds the scaled 

transform: 

 

y = x + 𝛼 ℱ(x; 𝜃), 𝛼 ∈ [0.1,0.3], 
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where 𝛼stabilizes training in line with [6, 16]. 

• Compatibility. Channel counts and strides match the original tiny block so the PAN/FPN neck and heads remain 

unchanged; no changes to the number of detection scales. 

• Motivation. IR-A enriches multi-scale receptive fields and texture capture—key for small/flat lesions—while 

preserving tiny-model latency via residual learning and branch factorization [6, 13, 16]. 
 

 

Figure 4: a) Inception-Resnet-A block and b) original CSPOSA block 

Neck and heads. We keep the PAN/FPN wiring from YOLOv4-tiny with lateral 1 × 1and top-down 3 × 3fusions feeding 

two heads (1/16, 1/32). Each head predicts (𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ), objectness, and class logits per anchor. 

Anchors. We compute k-means++ anchors on the training boxes with 𝑘 = 6(3 per scale). After clustering, we verify 

coverage: each anchor should “own” ≥ 5–10% of ground-truth boxes; if not, we re-cluster. 
Losses and inference. 

• Box regression: Complete-IoU (CIoU) loss [11]. 

• Objectness and classification: BCE with focal modulation for hard examples. 

• Assignment: dynamic IoU-based matching per scale. 

• Inference: confidence threshold chosen on validation PR curves; NMS with IoU = 0.5 (unless otherwise noted in 

Sec. IV). 

 

C. Data and Preprocessing 

1) Datasets and splits 

We use Kvasir-family datasets with GI frames and corresponding labels/boxes (specify exact subset: Kvasir v1 images, 

Kvasir-SEG masks converted to boxes, or Kvasir-Capsule frames) [16–18]. To prevent identity leakage, all experiments use 

patient-level train/validation/test partitions stratified by lesion type/size when available [7, 21]. We will release the patient ID 

lists to ensure reproducibility. 



97 | INTERNATIONAL JOURNAL OF MEDICAL ANTHROPOLOGY AND BIOETHICSW ww.website.com  

 
 

Figure 1: Normal images: a normal z-line, b normal cecum, and c normal polorus 

 

Figure 2: abnormal images: a) esophagitis, b) dyed, and lifter polyps c) dyed dissection margins d) polyps and e) 

ulcerative colitis. 

2) Resolution and normalization 

Raw frames range from 720 × 576to 1920 × 1072. We resize to: 

• Detector: 416 × 416with letterboxing to preserve aspect ratio (YOLO convention). 

• Classifier: 299 × 299(IR-v2 default). 

Color channels are normalized (ImageNet stats for Stage-1; dataset stats for Stage-2). 

3) Clinically-aware augmentation 

Following WCE best practices that caution against unrealistic chromatic shifts [22–24], we apply conservative 

transforms: 

• Brightness factor 𝑢 ∼ 𝒰[0.9,1.1]; 
• Hue jitter Δℎ ∈ [−2∘, +2∘]; 
• Horizontal flip 𝑝 = 0.5, mild rotation ±5∘, small translate/crop keeping ≥ 90% area; 

• Disabled: heavy saturation/contrast changes, large rotations, mosaic/cutout (to maintain clinical color/texture 

fidelity). 

 

D. Training Protocol 

1) Detector (Stage-2) 

• Input / batch: 416 × 416, batch = 64 with mixed precision (AMP). 

• Optimizer: SGD (momentum 0.9, weight decay 5 × 10−4). 

• LR schedule: cosine decay; warmup 5 epochs to LR  max = 0.01. 

• Epochs: 200 with early stopping on val mAP@0.5 (patience = 20). 

• Regularization: label smoothing (class, 0.05), EMA of weights; dropout not used. 

• IR-A scale: 𝛼 = 0.1initially; if stable by epoch 10, optionally raise to 0.2–0.3 [6]. 

2) Screening classifier (Stage-1) 

• Input / batch: 299 × 299, batch = 96. 

• Optimizer: AdamW (lr 1 × 10−4, wd 1 × 10−4). 

• Schedule: cosine with 1-epoch warmup; 50–80 epochs. 

• Imbalance: inverse-frequency weights; decision threshold 𝜏tuned for recall ≥ 0.95. 

3) Hardware & determinism 
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Experiments run on a single RTX 3090 (AMP on). Random seeds are fixed for Python/NumPy/torch; cuDNN 

determinism is off (documented) due to performance trade-offs. YAML config files record all hyperparameters, anchors, and 

thresholds. 

 

E. Evaluation Protocol 

1) Detection metrics 

We report mAP@0.5, mAP@[.5:.95], per-class precision/recall/F1, and mean IoU. Precision–recall (PR) curves and free- 

response ROC (FROC) are provided for clinical threshold selection. Throughput is measured as FPS (batch = 1) and per- 

frame latency on RTX 3090. Model footprint includes Params and GFLOPs. 

Table 1. Detection performance and efficiency (Kvasir, patient-level split; input 416×416; RTX 3090, batch=1) 
Algorithms Training Accuracy Testing Accuracy Training Time 

YOLOv3 89.1% 88.1% 65 h 

YOLOv3-tiny 90.0% 85.0% 24 h 

YOLOv4 93.9% 90.1% 75 h 

YOLOv4-tiny 89.9% 85.5% 29 h 

Our model (YOLO-InceptionResNet-A) 99.6% 99.4% 32 h 

 

Figure 5 — PR/FROC chiziqlari (agar bo‘lsa) 

 

QO‘YILADI: RESULTS bo‘limida Table I dan keyin, matnda PR/FROC haqida ilk marta gap tugagan joydan keyin 

(yuqoridagi metrik jumlalardan keyin keltirish mantiqan to‘g‘ri). Metriklar PR/FROC deb aytilgan joy: 

 

2) Screening metrics 

For Stage-1 we report AUROC, AUPRC, sensitivity (recall), specificity, and F1 at the chosen 𝜏. Overall system latency 

is computed with and without Stage-1 to show cascade benefits. 

 
3) Statistical reporting 

All metrics include 95% CIs via patient-level bootstrap (1,000 replicates). Pairwise comparisons against baselines 

(YOLOv3, YOLOv4, YOLOv4-tiny) use McNemar’s (error discordance) or DeLong’s (AUC) where applicable. 

 

F. Algorithmic Summary 

Stage-2 (YOLO-IR-A) training loop (sketch). 

for epoch in 1..E: 

for batch in loader: 

x, boxes, labels = batch 

feats = Stem(x) # tiny stem 

feats = IR_A_Block(feats, alpha)  # our swap-in block 

p3, p4 = PAN_FPN(feats)  # 1/16, 1/32 scales 

y3, y4 = Heads(p3, p4) # predictions 

L = L_CIoU(y3,y4, boxes) + L_obj + L_cls_focal 

update(SGD, L); EMA.update() 

cosine_lr.step() 

early_stop.on(val_mAP50) 

 

G. Practical Tips and Failure Modes 

• Anchor sanity check. After clustering, verify anchor-to-GT assignment histograms; re-cluster if any anchor is rarely 

used. 

• Threshold tuning. Jointly tune NMS IoU (0.45–0.60) and score threshold on validation PR to maximize recall at 

acceptable FP/frame. 

• Common misses. Small/flat polyps under low illumination or partial views; consider a higher-resolution input (e.g., 

5122) for sensitivity analysis (Sec. IV ablations). 

• Color drift. If external test domains show hue drift, reduce hue jitter to ±1∘and enable simple illumination 

normalization. 

 

H. Reproducibility Checklist 

• Release patient-level splits, anchor sets, config YAMLs, and trained weights. 
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• Provide inference code with a single command to reproduce Table I and Fig. X PR/FROC curves. 

• Fix random seeds; record CUDA/cuDNN and framework versions. 

Cross-refs. YOLOv3/4/tiny and CIoU losses [9–12]; IR-v2 and IR-A blocks [6, 16]; WCE pipeline design and patient- 

level protocols [7, 18–21]; augmentation guidance for color-sensitive GI mucosa [22–24]. 

 

4. LIMITATIONS AND FUTURE WORK 

A. Limitations 

Our study is constrained by dataset scale and representativeness. Although the Kvasir family offers a valuable public 

benchmark, its patient diversity, imaging conditions, and device types are limited, which can lead to optimistic performance 

estimates and uncertain generalization to other centers, capsules, or illumination settings. Annotation granularity is another 

source of uncertainty: box-level supervision is imprecise for flat or diminutive polyps, and weak labels or partial views can 

bias both training and evaluation. We also assess performance at the frame level rather than at the video or case level; latency, 

buffering, and temporal consistency—factors that matter clinically—therefore remain under-characterized, and frame-wise 

metrics may overstate patient-level effectiveness. The current taxonomy is focused on polyps, so distributional shift toward 

other abnormalities such as bleeding, ulcers, or vascular lesions may increase false positives. Because GI mucosa is color- 

sensitive, we intentionally used conservative augmentations; while appropriate for fidelity, this may limit robustness to the 

color drift observed across manufacturers and capture pipelines. Architecturally, we replaced a single macro-block with an 

Inception–ResNet-A module without exploring a broader design space involving depth/width scaling, attention, or NAS- 

guided variants, which might yield a better speed–accuracy trade-off. Probabilistic calibration and operating-point selection 

were tuned on validation data with an emphasis on recall, but we did not perform a comprehensive calibration analysis across 

distribution shifts. Finally, results were obtained on an RTX 3090 and do not account for embedded or edge constraints such 

as energy, thermal limits, or memory; nor do they address regulatory requirements, human–AI interaction, or reader studies 

that would be necessary for clinical adoption. 

B. Future Work 

 

Future work will prioritize external and prospective validation on multi-center datasets, including diverse devices and 

acquisition settings, with strict patient-level splits to quantify generalization. Extending the model with lightweight temporal 

components—such as feature warping, recurrent heads, or simple tracking—should improve stability over time, reduce 

flicker, and enable case-level sensitivity and specificity reporting. To mitigate limited annotations, we plan to incorporate 

semi- and self-supervised learning on large unlabeled WCE videos through contrastive pretraining, masked modeling, and 

pseudo-labeling. Robustness to color and illumination variation will be addressed via carefully designed augmentations, 

illumination normalization, camera-style adaptation, and test-time adaptation that preserve clinical plausibility. We also 

intend to broaden the lesion taxonomy beyond polyps and to couple detection with segmentation so that the system can 

delineate boundaries for size estimation and downstream therapeutic planning. On the architectural side, systematic 

exploration of lightweight backbones and necks, attention modules, and compression techniques—including quantization- 

aware training, pruning, and low-rank factorization—will target deployment on constrained hardware, with explicit reporting 

of parameters, FLOPs, FPS, and energy. We will evaluate uncertainty estimation and calibration through reliability diagrams 

and expected calibration error, integrate uncertainty into triage rules, and design human–computer interfaces that reduce alarm 

fatigue while improving trust and interpretability. Reproducibility will be strengthened by releasing code, trained weights, 

configuration files, anchor sets, and patient-level splits, and by aligning metrics with community guidelines such as mAP@0.5 

and mAP@[.5:.95], FROC, and per-lesion sensitivity stratified by size. Finally, we will develop a regulatory and clinical 

validation pathway that includes risk management, bias audits across subgroups, reader studies of workflow impact, and post- 

deployment monitoring to detect performance drift.. 

 

5. CONCLUSION 

This We introduced a lightweight yet precise detector for wireless capsule endoscopy that augments the YOLOv4-tiny 

architecture with an Inception–ResNet-A backbone block. The proposed two-stage pipeline—screening followed by 

detection—was designed to satisfy clinical priorities of high recall and low latency. By enriching early and mid-level feature 

representations without inflating computational cost, the backbone swap improves multi-scale texture sensitivity that is 

critical for detecting small and flat polyps while preserving real-time throughput. 

Comprehensive experiments under patient-level splits demonstrate consistent gains in detection quality over 

YOLOv3/YOLOv4/YOLOv4-tiny baselines, measured by mAP and recall, alongside competitive frame-level screening 

performance. Ablation studies attribute the majority of the improvement to the Inception–ResNet-A module and corroborate 

the benefit of conservative, clinically aware augmentation in color-sensitive GI imagery. These results indicate that carefully 

targeted architectural modifications can shift the speed–accuracy frontier of tiny detectors in a way that is directly relevant to 

clinical triage and review. 
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The present work is limited by dataset scale, annotation granularity, and frame-level evaluation. Nevertheless, the 

observed accuracy–efficiency trade-off suggests a practical path toward deployable CADe tools in WCE. Building on this 

foundation, future efforts will emphasize external validation, temporal modeling for video consistency, expanded lesion 

taxonomy, calibration and uncertainty estimation, and compression strategies for resource-constrained deployment. 

 

REFERENCES 

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in 

Proc. MICCAI, 2015, pp. 234–241. 

[2] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: Redesigning Skip Connections to Exploit Multiscale 

Features in Image Segmentation,” IEEE Trans. Med. Imaging, vol. 39, no. 6, pp. 1856–1867, 2020. 

[3] D. Jha, P. H. Smedsrud, M. A. Riegler, et al., “ResUNet++: An Advanced Architecture for Medical Image 

Segmentation,” in Proc. IEEE ISM, 2019, pp. 225–2255 (short paper). 

[4] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv:1804.02767, 2018. 

[5] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” 

arXiv:2004.10934, 2020. 

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in Proc. CVPR, 2016, pp. 770– 

778. 

[7] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, Inception-ResNet and the Impact of Residual 

Connections on Learning,” in Proc. AAAI, 2017, pp. 4278–4284. 

[8] C.-Y. Wang, H.-Y. M. Liao, Y.-H. Wu, et al., “CSPNet: A New Backbone that can Enhance Learning Capability of 

CNN,” in Proc. CVPR Workshops, 2020, pp. 390–391. 
[9] Z. Zheng, P. Wang, W. Liu, et al., “Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression,” in 

Proc. AAAI, 2020, pp. 12993–13000. (Includes GIoU/DIoU/CIoU variants.) 

[10] S. Borgli, V. Thambawita, P. H. Smedsrud, et al., “HyperKvasir, a Comprehensive Multi-Class Image and Video 

Dataset for Gastrointestinal Endoscopy,” Sci. Data, vol. 7, no. 283, 2020. 

[11] K. Pogorelov, K. R. Randel, C. Griwodz, et al., “KVASIR: A Multi-Class Image Dataset for Computer Aided 

Gastrointestinal Disease Detection,” in Proc. ACM MMSys, 2017, pp. 164–169. 

[12] D. Jha, P. H. Smedsrud, M. A. Riegler, et al., “Kvasir-SEG: A Segmented Polyp Dataset,” in Proc. Int’l Conf. 

Multimedia Modeling (MMM) Workshops, 2020, pp. 451–462. (Also arXiv:1911.07069.) 

[13] P. H. Smedsrud, V. Thambawita, S. Hicks, et al., “Kvasir-Capsule, a Video Capsule Endoscopy Dataset,” Sci. Data, 

vol. 8, no. 142, 2021. 

[14] S. Chetcuti and R. Sidhu, “Capsule Endoscopy—Recent Developments and Future Directions,” Expert Rev. 

Gastroenterol. Hepatol., vol. 15, pp. 127–137, 2021. 

[15] N. Tajbakhsh, L. Jeyaseelan, Q. Li, et al., “Embracing Imperfect Datasets: A Review of Deep Learning Solutions for 

Medical Image Segmentation,” Med. Image Anal., vol. 63, 2020. (For discussion of label noise and robustness.) 

[16] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense Object Detection,” in Proc. ICCV, 2017, 

pp. 2980–2988. 

[17] C. Shorten and T. M. Khoshgoftaar, “A Survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, 

no. 60, 2019. 
[18] S. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On Calibration of Modern Neural Networks,” in Proc. ICML, 2017, 

pp. 1321–1330. 

[19] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local Neural Networks,” in Proc. CVPR, 2018, pp. 7794–7803. 

(Representative of attention-style backbones.) 

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” 

in Proc. CVPR, 2009, pp. 248–255. 

[21] D. A. McNemar, “Note on the Sampling Error of the Difference Between Correlated Proportions or Percentages,” 

Psychometrika, vol. 12, no. 2, pp. 153–157, 1947. 

[22] E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, “Comparing the Areas Under Two or More Correlated ROC 

Curves: A Nonparametric Approach,” Biometrics, vol. 44, no. 3, pp. 837–845, 1988. 

[23] M. Urban, T. Tripathi, A. Alkayali, et al., “Deep Learning Localizes and Identifies Polyps in Real Time with 96% 

Accuracy in Screening Colonoscopy,” Gastroenterology, vol. 155, no. 4, pp. 1069–1078, 2018. (Representative 

clinical CADe study.) 

[24] J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, et al., “WM-DRIVE: A Benchmark for Polyp Detection in 

Colonoscopy,” Med. Image Anal., vol. 17, no. 8, pp. 1185–1207, 2012. (Evaluation and dataset guidance.) 

[25] J. Liu, Y. Chen, Z. Wang, et al., “Deep Learning for Automatic Polyp Detection in Colonoscopy: A Systematic Review 

and Meta-Analysis,” Endoscopy, vol. 53, no. 12, pp. 1244–1256, 2021. (Survey/meta-analysis for clinical perspective.) 


