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Abstract:

The dynamic response of rigid structures resting on elastic foundations is a fundamental problem in civil and
seismic engineering, especially when accounting for spatial variability in soil properties. Traditional models
such as Winkler’s foundation fail to capture the continuous distribution of soil deformation and reactive forces
accurately. This study addresses this gap by formulating and solving the problem of a rigid beam resting on an
elastic single-layer foundation with depth-dependent mechanical characteristics. Using the variational principle
of V.Z. Vlasov, the authors derive integro-differential equations governing beam oscillations under seismic
loading, incorporating wave propagation velocity and variable soil density. Numerical simulations and
frequency response analyses reveal that the amplitude of oscillation is finite even at resonant frequencies—
unlike in simpler models—and strongly depends on soil layer thickness and stiffness. These findings have
important implications for the realistic modeling of soil-structure interaction, contributing to safer and more
efficient structural design in earthquake-prone regions.

Keywords: Reactive resistance of the soil, seismic load, two-dimensional elastic layer, seismogram, variational
principle, approximation.

1. Introduction

The peculiarity of dynamic calculation of a beam on an elastic foundation is the necessity of taking
into account reactive forces of the soil foundation in addition to active forces from external influences.
To determine these forces, it is necessary to know the mechanical indicators characterizing the ability
of the soil to resist the acting loads[1]. The most widely used foundation model in the practice of
calculating foundations is the Winkler hypothesis, where the foundation of a structure and the soil are
connected to each other in vertical and horizontal directions so that any movements of the foundation
entail the same movements of the soil, where the intensity of the load is proportional to the movement
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of the soil[2]. This model can be represented as a series of separate identical springs mounted on a rigid
base and operating independently of each other. The mechanical properties of the soil model are
characterized by one parameter - the proportionality coefficient; such a model is usually called a soil
foundation model with a bedding coefficient.[3]

The main disadvantage of the model with one bedding coefficient is that it does not have the property
of “distributing” the load, whereas experience shows that the soil surface is deformed beyond the loaded
part, and the deformation spreads to the sides to infinity, gradually attenuating as it moves away from
the loaded part.[4] This circumstance, as noted in works, requires consideration of issues of refining
the calculation schemes of the foundation in the sense of bringing them closer to reality, developing
methods for calculating complex spatial structures taking into account the spatial flexibility of the
soil.[5][6]

The corresponding problems facing engineering practice can be effectively solved using
approximate methods that make it possible to simplify calculation formulas. Currently, a technical
theory for calculating structures on an elastic foundation has been developed, which is based on the
variational principle of V.Z.Vlasov [7].

Formulation Of The Problem

Let us consider a flat deformed state of a single-layer elastic T —
foundation with a variable propagation velocity of a longitudinal , ENE =
wave and a variable density along the depth of the layer and a
constant Poisson's ratio. We assume that the upper boundary of the
layer contacts a rigid beam, and the lower boundary of the layer is
fixed. We set the origin of the coordinates in the middle of the
beam, direct the Ox axis in the horizontal direction and the Oy axis
perpendicular to it from top to bottom (Fig. 1)[8]. Figure.1 Scheme of deformation of the

Let us denote by u(x,y,t), v(x,y,t) the displacements of contacting with rigid
particles along the Ox and Oy axes, respectively. In what follows,
we assume that u(u(x, y,t) = 0. Using the variational principle of V.Z.Vlasov , we will reduce the
motion of the medium to one-dimensional, according to which we will represent the displacement
v(x,y, t) through the generalized displacement V (x, t) and the transverse distribution function ¥ (y)
using the formula[9] [10].

v(x,y,t) =V, )y (y) 1)

where the function ¥ (y) is determined by the physical content of the problem and approximates the
deformed state of the layer in the transverse direction. Let us consider the case when a rigid beam of
length 2L is located on the upper boundary of the layer, moving under the action of a vertical force

Py ().
In this case, the function v(x, t) is chosen in the following form:[6]
v(x,y,t) =V (t) Y(y) at Ll<x <L (2)

v(x,y,t) =V(x,)Y(y) at —co<x<-L, L<x <o 3)
Voltages oy, g, and 7,,, = T, are calculated using formulas

_ Eo()vo 0v

T 1-v2 oy (4)
_ Ec@)ov

Y 12y (%)
_ _Eo») ov

YX T 2(14vg) Ox (6)

In the case of plane deformation, the quantities E,(y) and v, are determined through the modulus
of elasticity E,,(y)) of the Poisson's ratio v,,0f the soil according to the formulas

E v
Eo — rp(yz) Vo = rp
1-vg 1-v,

Assuming y(0) = 1 and following the work, we compose an expression for the work of all forces
of the selected element on the possible displacement v(x, y, t)[11][12].
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5 3 2y (dy = 8 fi o dy — 8 ) p) T2 p()dy + g t) = 0 (7)

where q(x t) is the contact force between the beam and the foundation. Taking into account the
dependencies E,, = p;,(¥)cs,(¥), where p,,(y) and c.,(y) are the density and propagation velocity
of the Iongitudinal wave in the soil layer, respectively, we will reduce the last equality to the form

25— —kV — mo Py Y+ q(x, H)Y(0) =0 (8)
where s = 4£TCC‘3I Bow* () dy, k = 22252 [ By ()2 (v) dy,

Mo = 8pcp [ w3 dy, moy = 8pg, [, pO — 2)dy
Eo(y) = Eo(¥)/PepClp, P = P/Pep
pep and cc,average density and propagation velocity of longitudinal waves in soil environment.

2. Materials and Methods

In the future, we assume ¥ (0) = 1and, based on the symmetry of the problem under consideration,
we obtain a solution for the interval 0 < x < oo,

At the boundary of the layer y = 0at 0 < x < L according to (2) we assume V(x,t) = V,(t),
q(x,t) = qo(t) = kV, + m,V, where V, satisfies the equation of motion of a rigid beam with an added
mass myL on an elastic foundation with a bedding coefficient b = kl, respectively, the reactive and
external forces 2sV’(L) and Py (t):[15]

(m + myL)Vy = —kLV, — 25V’ (L)+P,(t) (9)
here m is the mass of the beam.
To determine the reactive force 2sV’(L + 0), assuming q(x, t) = 0, we represent equation (8) in the

form

2 2
IV _19V, 2y L<x<w (10)

0x2%2  a? ot?
Where a = /2s/my, ¢ = /k/2s
Equation (10) is integrated under zero initial and following boundary conditions

Vix,t) =Vy(t) atx=L,V(x,t) >0 ) atx » o (11)

Let us consider a stationary case of beam oscillation under the action of a periodic force

Py = Py sin(wpt),

where Py, is the amplitude, w, is the frequency of oscillation of the external influence

Assuming V, = A, sin(wot),V(x,t) = A(x) sin(w,t) and using the conditions, for wy, < wy =
ac, we obtain

_ Pyo 1
Ao = (m+myL) w2 +2nw.—w? (12)
A(x) = Agexp [—a(x — L)] (13)

kL S 2 2 W«
where w = yN=————— W, =Wy — Wy, = —
m+mgL a(m+mgl) a

In the case of the action of a harmonic load P, = P, sin(wyt), we consider a non-stationary case
of an oscillatory process. The solution of the wave equation (10), satisfying the zero initial and
boundary conditions (11), is presented in the form [7].

_ N 4 I1(cy/a?(t—1)2-x2)
V="t a) Caxfo Vo () a2 (t—12—%2) 2 dr (14)
The equation of motion of the beam (9) after setting the expression V'(L) from (14) takes the form

Vo + 20V + w2V + 2nay [ Vo(t )11@ dz = P (15)

(m+mgl)
Where x = x — L, 1,(z) -Bessel function of the second kind and first order.
(15) is an integro-differential equation for determining the displacement of the beam, which can be
solved numerically. In order to find a solution in the form of a periodic function
Vo = Cy sin(wgt) + C, cos(wyt) (16)
we use the freezing method, according to which equation (15) is represented as
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Poo sin(wgt)

I
Vo + 2nVy + w?Vo + 2nwy [ Volt = )12 L) g, e )
By putting (16) into the equation, we obtain a system of equations for determining the constants C; and

Cz
POO

(m +myl)
[w? — w2 + 2nw,(N; —N,)]C, =0
2_,.\2 _
From this system we find €, = —[7-wor2ne. (-Ny)]
(m+mgl) A
o Py, [w? — w3 + 2nw,(N; + N)]
2 (m+mgl) A
rae Ny = fooo cos (%z)%dz, N, = f sin (22 Il(z) dz
k
A= [w? — i + 2nw, (N, — NZ)][w — w3 + 2nw,(N; + N,)]
The beam oscillation amplitude (AFC) is calculated using the formula

o rol ™ (m+myL)+/A i
_ she[(yH-y)]

To carry out calculations, the function y(y) is taken in the form ¥ (y) = ShoyH

[w? — w3 + 2nw,(N; + N,)] C; — 2nw,C, =

2nwyCqy +

3. Results and Discussion
Graphical dependencies of the function on the variable y for different values y of the parameter y

are shown in Figure. 2.
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Figure. 2. Curves of the dependence of the function y on the variable y for two layer
thicknesses H at different values of the parameter y.

Fig. 2 shows the acceleration curves | = w3|V,| (C%) change of a rigid beam at different values of
layer thickness H (m) (layer thickness) beam mass m(kg).. The calculations use experimental data
on the change in the speed of transmission of long velocity cp(i) along the layer height y(m),
approximated as linear, depending on the constancy of the density of the medium p,,, ( )[13]

Crp = 7.2y + 225 0<y<30

Young's modulus of the soil was calculated using the formula E,, = p,c(y)

In calculations it is accepted v, = 0.4, p ;,, = 2000 *‘—; 6 =1m,y = 0.05,L = 10M, Ay = 0.05Mm
M
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From the analysis of the curves presented in Fig. 3 and Fig. 4 it follows that the amplitude of the
beam oscillation, in contrast to the base according to the Winkler model where it is unlimited in
resonant frequencies, the amplitude is limited and its maximum values are achieved in the zone of
the rigid beam location[14]. At small layer thicknesses the amplitude of oscillations has a maximum
value and with the growth of thickness the resonant frequencies move towards the region of low
frequencies. In the considered case for layer thicknesses H>15m the growth of amplitude is
insignificant the resonant frequencies remain unchanged[15].
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Figure. 3. Frequency response curves of a rigid beam for beam mass m=50000 kg for
different values of soil layer thickness H(m).
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Figure. 4. Frequency response curves of a rigid beam for beam mass m=30000 kg for
different values of soil layer thickness H(m).

Figures 5 and 6 show the graphs of the acceleration distribution in different sections along the
horizontal direction for two frequencies of oscillation of the external force [16]. From the analysis
of the curves it follows that with an increase in the frequency of oscillation of the external force, the
acceleration of the particle layer in the section of the layer increases and at a certain value, as shown
in Figures 3 and 4, it reaches the maximum value[16].
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Figure 6. Distribution curves of particle acceleration in different horizontal sections of the soil layer from the

variable x(m) for two frequencies w,
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Figure. 5. Distribution curves of particle acceleration in different horizontal sections of the soil layer from
the variable x(m)for two frequencies w, (%)of oscillations of the external force at m = 50000kg

4. Conclusion.

This study has provided a rigorous analytical framework for evaluating the dynamic
behavior of a rigid beam resting on an elastic single-layer foundation with depth-dependent
mechanical characteristics. By applying the variational principle and incorporating spatially
varying wave propagation velocities and densities, the research demonstrates that, unlike the
Winkler model, the amplitude of beam oscillations remains bounded even at resonant
frequencies. Numerical simulations reveal that increasing soil layer thickness shifts resonant
frequencies to lower values while reducing oscillation amplitude growth. These findings have
important implications for the design and seismic stability assessment of structural systems
interacting with heterogeneous soil media. The results underscore the necessity of accounting for
soil stratification and dynamic soil-structure interaction effects in engineering practice. Further
research should focus on extending the model to multilayered and anisotropic foundations,
incorporating nonlinear soil behavior, and validating the theoretical predictions through physical
experiments and field data.

References

Vlasov V.Z., Leontiev N.N. Beams, plates and shells on an elastic base. Moscow Ed. Physico-
mathematical literature. 1960. p. 491

Zhemochkin B.N., Siniyayn A.P. Practical methods for calculating beam and slab foundations on an
elastic base (without Winkler's hypotheses). Stroyizdat, M., 1947.

Glushkov G.I. Calculation of structures buried in the ground. M. Stroyizdat. 1977. 295 p.

Turaev H.Sh., Shirinkulov T.Sh. On the calculation of beam slabs on an elastic heterogeneous
foundation taking into account friction forces. in. collection. Seismic resistance of underground
structures and natural studies of the building. Tashkent. 1976. pp. 105-112

Khasanov A.Z. Khasanov Z.A Experimental and Theoretical Study of Strength and Stability of soil.
2020 Taylor and Francis Group Boca Raton London, New York Leiden Belinda book.

Rasuljv Kh.Z., Toshxujaev A.U.Depth of the diluted zone in the humidity —field loess bases under
shaking conditions. European Science Review. 2017 No. 3-4

Korenev B.G. Issues of calculation of beams and slabs on elastic foundation. M., Gosstoizd. 1964
Gorbunov-Posadov M.l., Malikova T.A., Solomin V.l. Calculation of structures on an elastic
foundation. M., Stroyizdat. 1984- 679 p.

Egorov K. E. On deformation of a foundation of finite thickness. Foundation, foundations and soil
mechanics-1961. No. 1

Mardonov B.M. Turaev I.Kh. Birzhinsli elastik asos nazariyasiga V.Z. Vlasovning variation of usulini
kyllash. Memorchilik va qurilish muammolari. 2018, No. 3. 153-155 betlar

38 | INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY  www.multijournals.org


http://www.multijournals.org/

[11]

[12]

[13]

[14]

[15]

[16]

Budak B.M., Samarsky A.A., Tikhonov A.N. Collection of problems in mathematical physics. M., State
Publishing House of Technical and Theoretical Literature.!958. 651 p.

Yadigarov E.M., Bozorov J.Sh., Vahobov B.J., Aktamov B.U.//Application of deep soil mixing (dsm)
piles in solid soils assessment of the changes in the seismic properties of solid soils using plaxis 3d
program by the finite element method// Architecture and construction problems samarkand 2023, No.
4., pp. 336-340,

Mardonov B., Xaydarova K.X., Ismatova D.M., // Horizontal rotational vibrations of structures with
foundations interacting with the base according to a linear law under seismic influences// Problems of
architecture and construction 2 (3),SamDAQI 824-827

Dilshod Kholikov, Jamshid Abdurazzagov, Rustambek Usmonov, Kamola Xaydarova,// Free Torsional
Vibration of an Elastic Thin-Walled Cylindrical Shell with Variable Cross Section.// AIP Conf. Proc.
3244, 060029 (2024).

KX Khaydarova// Study Of Vibrations Of A Beam On A Multilayer Foundation Under The Influence
Of Seismic Forces// Republican Scientific and Technical Conference "prospects of training engineering
personnel in new uzbekistan and actual issues of increasing the social and political activity of youth™
2025/3/31, 326-330pp

Mardonov B., Xaydarova K.X// Vibration Of A Beam Placed On The Surface Of A Single-Layer
Elastic Medium Under The Influence Of Seismic Forces// integration of science, education and
technology: development trends, problems and solutions in the transport sector//2025 23-25 pp

39 | INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY  www.multijournals.org


http://www.multijournals.org/

