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Abstract:  

The dynamic response of rigid structures resting on elastic foundations is a fundamental problem in civil and 

seismic engineering, especially when accounting for spatial variability in soil properties. Traditional models 

such as Winkler’s foundation fail to capture the continuous distribution of soil deformation and reactive forces 

accurately. This study addresses this gap by formulating and solving the problem of a rigid beam resting on an 

elastic single-layer foundation with depth-dependent mechanical characteristics. Using the variational principle 

of V.Z. Vlasov, the authors derive integro-differential equations governing beam oscillations under seismic 

loading, incorporating wave propagation velocity and variable soil density. Numerical simulations and 

frequency response analyses reveal that the amplitude of oscillation is finite even at resonant frequencies—

unlike in simpler models—and strongly depends on soil layer thickness and stiffness. These findings have 

important implications for the realistic modeling of soil-structure interaction, contributing to safer and more 

efficient structural design in earthquake-prone regions. 

. 

Keywords: Reactive resistance of the soil, seismic load, two-dimensional elastic layer, seismogram, variational 
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1. Introduction 

The peculiarity of dynamic calculation of a beam on an elastic foundation is the necessity of taking 

into account reactive forces of the soil foundation in addition to active forces from external influences. 

To determine these forces, it is necessary to know the mechanical indicators characterizing the ability 

of the soil to resist the acting loads[1]. The most widely used foundation model in the practice of 

calculating foundations is the Winkler hypothesis, where the foundation of a structure and the soil are 

connected to each other in vertical and horizontal directions so that any movements of the foundation 

entail the same movements of the soil, where the intensity of the load is proportional to the movement 
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of the soil[2]. This model can be represented as a series of separate identical springs mounted on a rigid 

base and operating independently of each other. The mechanical properties of the soil model are 

characterized by one parameter - the proportionality coefficient; such a model is usually called a soil 

foundation model with a bedding coefficient.[3] 

The main disadvantage of the model with one bedding coefficient is that it does not have the property 

of “distributing” the load, whereas experience shows that the soil surface is deformed beyond the loaded 

part, and the deformation spreads to the sides to infinity, gradually attenuating as it moves away from 

the loaded part.[4] This circumstance, as noted in works, requires consideration of issues of refining 

the calculation schemes of the foundation in the sense of bringing them closer to reality, developing 

methods for calculating complex spatial structures taking into account the spatial flexibility of the 

soil.[5][6] 

The corresponding problems facing engineering practice can be effectively solved using 

approximate methods that make it possible to simplify calculation formulas. Currently, a technical 

theory for calculating structures on an elastic foundation has been developed, which is based on the 

variational principle of  V.Z.Vlasov [7]. 

 

Formulation Of The Problem 

Let us consider a flat deformed state of a single-layer elastic 

foundation with a variable propagation velocity of a longitudinal 

wave and a variable density along the depth of the layer and a 

constant Poisson's ratio. We assume that the upper boundary of the 

layer contacts a rigid beam, and the lower boundary of the layer is 

fixed. We set the origin of the coordinates in the middle of the 

beam, direct the Ox axis in the horizontal direction and the Oy axis 

perpendicular to it from top to bottom (Fig. 1)[8]. 

Let us denote by 𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡) the displacements of 

particles along the 𝑂𝑥 and 𝑂𝑦 axes, respectively. In what follows, 

we assume that u(𝑢(𝑥, 𝑦, 𝑡) = 0. Using the variational principle of V.Z.Vlasov , we will reduce the 

motion of the medium to one-dimensional, according to which we will represent the displacement 

𝑣(𝑥, 𝑦, 𝑡) through the generalized displacement 𝑉(𝑥, 𝑡) and the transverse distribution function 𝜓(𝑦) 

using the formula[9] [10]. 

𝑣(𝑥, 𝑦, 𝑡) = 𝑉(𝑥, 𝑡)𝜓(𝑦)                                                (1) 

where the function 𝜓(𝑦) is determined by the physical content of the problem and approximates the 

deformed state of the layer in the transverse direction. Let us consider the case when a rigid beam of 

length 2L is located on the upper boundary of the layer, moving under the action of a vertical force 

𝑃0(𝑡). 
In this case, the function 𝑣(𝑥, 𝑡) is chosen in the following form:[6] 

𝑣(𝑥, 𝑦, 𝑡) = 𝑉0(𝑡) 𝜓(𝑦)         at              -L< 𝑥 < 𝐿                    (2) 

𝑣(𝑥, 𝑦, 𝑡) = 𝑉(𝑥, 𝑡)𝜓(𝑦)    at   −∞ < 𝑥 < −𝐿,  L< 𝑥 < ∞         (3) 

Voltages 𝜎𝑥 , 𝜎𝑦 and 𝜏𝑦𝑥 = 𝜏𝑥𝑦 are calculated using formulas 

𝜎𝑥 =
𝐸0(𝑦)𝜈0

1−𝜈0
2

𝜕𝑣

𝜕𝑦
                                                      (4) 

𝜎𝑦 =
𝐸0(𝑦)

1−𝜈0
2

𝜕𝑣

𝜕𝑦
                                                        (5) 

𝜏𝑦𝑥 =
𝐸0(𝑦)

2(1+𝜈0)

𝜕𝑣    

𝜕𝑥
                                                    (6)  

In the case of plane deformation, the quantities 𝐸0(𝑦)  and 𝜈0 are determined through the modulus 

of elasticity 𝐸гр(𝑦)) of the Poisson's ratio 𝜈грof the soil according to the formulas 

𝐸0 =
Егр(𝑦)

1 − 𝜈гр
2

, 𝜈0 =
𝜈гр

1 − 𝜈гр
 

Assuming 𝜓(0) = 1 and following the work, we compose an expression for the work of all forces 

of the selected element on the possible displacement 𝑣(𝑥, 𝑦, 𝑡)[11][12]. 

Figure.1 Scheme of deformation of the 

contacting with rigid  
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𝛿 ∫
𝜕𝜏𝑦𝑥

𝜕𝑥
𝜓(𝑦)𝑑𝑦 −

𝐻

0
𝛿 ∫ 𝜎𝑦𝜓ˊ(𝑦)𝑑𝑦 −

𝐻

0
 𝛿 ∫ 𝜌(𝑦)

𝜕2𝑣

𝜕𝑡2 𝜓(𝑦)𝑑𝑦 + 𝑞(𝑥, 𝑡) = 0
𝐻

0
  (7) 

where 𝑞(𝑥, 𝑡)  is the contact force between the beam and the foundation. Taking into account the 

dependencies 𝐸гр = 𝜌гр(𝑦)𝑐гр
2 (𝑦),  where  𝜌гр(𝑦) and сгр(𝑦)  are the density and propagation velocity 

of the longitudinal wave in the soil layer, respectively, we will reduce the last equality to the form 

2𝑠
𝜕2𝑉

𝜕𝑥2
− 𝑘𝑉 − 𝑚0

𝜕2𝑉

𝜕𝑡2
+ 𝑞(𝑥, 𝑡)𝜓(0) = 0                        (8) 

where 𝑠 =
𝛿𝜌𝑐рсср

2

4(1+𝜈0)
∫ 𝐸̅0(𝑦)𝜓2(𝑦)

𝐻

0
𝑑𝑦,  𝑘 =

𝛿𝜌𝑐рсср
2

1−𝜈0
2 ∫ 𝐸̅0(𝑦)𝜓ˊ2(𝑦)

𝐻

0
𝑑𝑦, 

𝑚0 = 𝛿𝜌𝑐р ∫ 𝜌̅𝜓2(𝑦)𝑑𝑦
𝐻

0
,  𝑚01 = 𝛿𝜌𝑐р ∫ 𝜌̅(𝜓 − 𝜓2)𝑑𝑦

𝐻

0
 

𝐸̅0(𝑦) = 𝐸0(𝑦)/𝜌𝑐рсср,
2 , 𝜌̅ = 𝜌/𝜌𝑐р 

𝜌𝑐р and  ссрaverage density and propagation velocity of longitudinal waves in soil environment. 

 

2. Materials and Methods 

In the future, we assume 𝜓(0) = 1and, based on the symmetry of the problem under consideration, 

we obtain a solution for the interval 0 < 𝑥 < ∞. 

At the boundary of the layer 𝑦 = 0 at 0 < 𝑥 < 𝐿 according to (2) we assume 𝑉(𝑥, 𝑡) = 𝑉0(𝑡), 

𝑞(𝑥, 𝑡) = 𝑞0(𝑡) = 𝑘𝑉0 + 𝑚0𝑉0̈  where 𝑉0 satisfies the equation of motion of a rigid beam with an added 

mass 𝑚0𝐿 on an elastic foundation with a bedding coefficient 𝑏 = 𝑘𝑙, respectively, the reactive and 

external forces 2𝑠𝑉ˊ(𝐿) and  𝑃0(𝑡):[15] 

(𝑚 + 𝑚0𝐿)𝑉0̈ = −𝑘𝐿𝑉0 − 2𝑠𝑉ˊ(𝐿)+𝑃0(𝑡)                    (9) 

here m is the mass of the beam. 

To determine the reactive force 2𝑠𝑉ˊ(𝐿 + 0), assuming q(𝑥, 𝑡) = 0, we represent equation (8) in the 

form 
𝜕2𝑉

𝜕𝑥2 =
1

𝑎2

𝜕2𝑉

𝜕𝑡2 + 𝑐2V      L≤ 𝑥 < ∞                             (10) 

Where 𝑎 = √2𝑠/𝑚0, 𝑐 = √𝑘/2𝑠 

Equation (10) is integrated under zero initial and following boundary conditions 

𝑉(𝑥, 𝑡) = 𝑉0(𝑡)  at 𝑥 = 𝐿 , 𝑉(𝑥, 𝑡) → 0  )  at 𝑥 → ∞         (11) 

Let us consider a stationary case of beam oscillation under the action of a periodic force 

𝑃0 = 𝑃00 sin(𝜔0𝑡),   
where 𝑃00 is the amplitude, 𝜔0 is the frequency of oscillation of the external influence 

Assuming 𝑉0 = 𝐴0 sin(𝜔0𝑡) , 𝑉(𝑥, 𝑡) = 𝐴(𝑥) sin(𝜔0𝑡) and using the conditions, for 𝜔0 < 𝜔𝑘 =
𝑎𝑐, we obtain 

𝐴0 =
𝑃00

 (𝑚+𝑚0𝐿)

1

𝜔2+2𝑛𝜔∗−𝜔0
2                                           (12) 

𝐴(𝑥) = 𝐴0exp [−𝛼(𝑥 − 𝐿)]                                              (13) 

where 𝜔 =
𝑘𝐿

𝑚+𝑚0𝐿
 , n=

𝑠

𝑎(𝑚+𝑚0𝐿)
. 𝜔∗ = √𝜔𝑘

2 − 𝜔0
2 , 𝛼 =

𝜔∗

𝑎
 

In the case of the action of a harmonic load 𝑃0 = 𝑃00 sin(𝜔0𝑡),  we consider a non-stationary case 

of an oscillatory process. The solution of the wave equation (10), satisfying the zero initial and 

boundary conditions (11), is presented in the form [7]. 

𝑉 = 𝑉0(𝑡 −
𝑥̅

𝑎
)−𝑐𝑎𝑥̅ ∫ 𝑉0(𝜏)

𝐼1(𝑐√𝑎2(𝑡−𝜏)2−𝑥̅2)

√𝑎2(𝑡−𝜏)2−𝑥̅2)

𝑡−𝑥̅

0
𝑑𝜏                 (14) 

       The equation of motion of the beam (9) after setting the expression Vˊ(L) from (14) takes the form 

𝑉̈0 + 2𝑛𝑉̇0 + 𝜔2𝑉0 + 2𝑛𝜔𝑘 ∫ 𝑉0(𝑡 −
𝑧

𝜔𝑘
)

𝐼1(𝑧)

𝑧
𝑑𝑧

𝜔𝑘𝑡

0
=

𝑃00 sin(𝜔0𝑡)

(𝑚+𝑚0𝐿)
              (15) 

      Where 𝑥̅ = 𝑥 − 𝐿,   𝐼1(𝑧)  -Bessel function of the second kind and first order. 

(15) is an integro-differential equation for determining the displacement of the beam, which can be 

solved numerically. In order to find a solution in the form of a periodic function 

𝑉0 = С1 sin(𝜔0𝑡) + С2 𝑐𝑜𝑠(𝜔0𝑡)                                (16) 

       we use the freezing method, according to which equation (15) is represented as 
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𝑉̈0 + 2𝑛𝑉̇0 + 𝜔2𝑉0 + 2𝑛𝜔𝑘 ∫ 𝑉0(𝑡 −
𝑧

𝜔𝑘
)

𝐼1(𝑧)

𝑧
𝑑𝑧

∞

0
=

𝑃00 sin(𝜔0𝑡)

(𝑚+𝑚0𝐿)
     (17) 

By putting (16) into the equation, we obtain a system of equations for determining the constants С1 and 

С2 

[𝜔2 − 𝜔0
2 + 2𝑛𝜔∗(𝑁1 + 𝑁2)] С1 − 2𝑛𝜔0С2 =

𝑃00

(𝑚 + 𝑚0𝐿)
 

2𝑛𝜔0С1 + [𝜔2 − 𝜔0
2 + 2𝑛𝜔∗(𝑁1 − 𝑁2)] С2 = 0 

From this system we find    С1 =
𝑃00

(𝑚+𝑚0𝐿)

[𝜔2−𝜔0
2+2𝑛𝜔∗(𝑁1−𝑁2)] 

∆
 

С2 = −
𝑃00

(𝑚 + 𝑚0𝐿)

[𝜔2 − 𝜔0
2 + 2𝑛𝜔∗(𝑁1 + 𝑁2)] 

∆
 

где 𝑁1 = ∫ cos (
𝜔0

𝜔𝑘
𝑧)

∞

0

𝐼1(𝑧)

𝑧
𝑑𝑧, 𝑁2 = ∫ sin (

𝜔0

𝜔𝑘
𝑧)

∞

0

𝐼1(𝑧)

𝑧
𝑑𝑧 

∆= [𝜔2 − 𝜔0
2 + 2𝑛𝜔∗(𝑁1 − 𝑁2)][𝜔2 − 𝜔0

2 + 2𝑛𝜔∗(𝑁1 + 𝑁2)]  
The beam oscillation amplitude (AFC) is calculated using the formula 

𝐴0 = |𝑉0| =
𝑃00

(𝑚 + 𝑚0𝐿)

1

√∆
 

To carry out calculations, the function ψ(y) is taken in the form   𝜓(𝑦) =
𝑠ℎ2[(𝛾𝐻−𝑦)]

𝑠ℎ2𝛾𝐻
   

 

3. Results and Discussion 

Graphical dependencies of the function on the variable y for different values 𝑦 of the parameter γ 

are shown in Figure. 2. 

Fig. 2 shows the acceleration curves 𝐽 = 𝜔0
2|𝑉0| (

м

с2) change of a rigid beam at different values of 

layer thickness 𝐻 (м) (layer thickness) beam mass m(kg).. The calculations use experimental data 

on the change in the speed of transmission of long velocity с𝑝(
𝑚

𝑠𝑒𝑘
) along the layer height 𝑦(м), 

approximated as linear, depending on the constancy of the density of the medium 𝜌гр (
𝑘𝑔

м3)[13]. 

сгр = 7.2𝑦 + 225           0 < 𝑦 < 30 

Young's modulus of the soil was calculated using the formula Егр = 𝜌грср
2(у) 

In calculations it is accepted 𝜈гр = 0.4, 𝜌 гр = 2000
кг

м3, 𝛿 = 1м, 𝛾 = 0.05, 𝐿 = 10м,  𝐴0 = 0.05м 

Figure. 2. Curves of the dependence of the function ψ on the variable y for two layer 

thicknesses H at different values of the parameter γ. 

1. 𝛾 = 0,01 

2. 𝛾 = 0,05 

3. 𝛾 = 0,10 

4. 𝛾 = 0,20 

𝑎) 𝐻=15 m 𝑏) 𝐻=30 m 

𝜓(𝑦)

у(м

1 

2 

3 

4 
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From the analysis of the curves presented in Fig. 3 and Fig. 4 it follows that the amplitude of the 

beam oscillation, in contrast to the base according to the Winkler model where it is unlimited in 

resonant frequencies, the amplitude is limited and its maximum values are achieved in the zone of 

the rigid beam location[14]. At small layer thicknesses the amplitude of oscillations has a maximum 

value and with the growth of thickness the resonant frequencies move towards the region of low 

frequencies. In the considered case for layer thicknesses H>15m the growth of amplitude is 

insignificant the resonant frequencies remain unchanged[15]. 

     Figures 5 and 6 show the graphs of the acceleration distribution in different sections along the 

horizontal direction for two frequencies of oscillation of the external force [16]. From the analysis 

of the curves it follows that with an increase in the frequency of oscillation of the external force, the 

acceleration of the particle layer in the section of the layer increases and at a certain value, as shown 

in Figures 3 and 4, it reaches the maximum value[16]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 3. Frequency response curves of a rigid beam for beam mass m=50000 kg for 

different values of soil layer thickness H(m). 

1. 𝐻 = 5𝑚 

2. 𝐻 = 6𝑚 

3. 𝐻 = 8𝑚 

4. 𝐻 = 10𝑚 

5. 𝐻 = 14𝑚 

 

6. 𝐻 = 16𝑚 

7. 𝐻 = 17𝑚 

8. 𝐻 = 18𝑚 

9. 𝐻 = 21𝑚 

10. 𝐻 = 30𝑚 

 

Figure. 4. Frequency response curves of a rigid beam for beam mass m=30000 kg for 

different values of soil layer thickness H(m). 

1. 𝐻 = 5𝑚 

2. 𝐻 = 6𝑚 

3. 𝐻 = 8𝑚 

4. 𝐻 = 10𝑚 

5. 𝐻 = 14𝑚 

 

6. 𝐻 = 16𝑚 

7. 𝐻 = 17𝑚 

8. 𝐻 = 18𝑚 

9. 𝐻 = 21𝑚 

10. 𝐻 = 30𝑚 

 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1
0 

Figure 6. Distribution curves of particle acceleration in different horizontal sections of the soil layer from the 

variable  𝑥(м) for two frequencies 𝜔0 (
1

𝑐
) of oscillations of the external force at 𝑚 = 30000 𝑘𝑔 

𝑎) 𝜔0 = 5(
1

𝑐
) 𝑏) 𝜔0 = 11(

1

𝑐
) 

𝐽(
𝑚

𝑐2
) 𝐽(

𝑚

𝑐2
) 

y=14 m 

y=0 m 

y=14 m 

y=3 m 

y=6 m 

y=10 m y=10 m 

y=6 m 

y=3 m 

y=0 m 
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4. Conclusion. 

This study has provided a rigorous analytical framework for evaluating the dynamic 
behavior of a rigid beam resting on an elastic single-layer foundation with depth-dependent 
mechanical characteristics. By applying the variational principle and incorporating spatially 
varying wave propagation velocities and densities, the research demonstrates that, unlike the 
Winkler model, the amplitude of beam oscillations remains bounded even at resonant 
frequencies. Numerical simulations reveal that increasing soil layer thickness shifts resonant 
frequencies to lower values while reducing oscillation amplitude growth. These findings have 
important implications for the design and seismic stability assessment of structural systems 
interacting with heterogeneous soil media. The results underscore the necessity of accounting for 
soil stratification and dynamic soil-structure interaction effects in engineering practice. Further 
research should focus on extending the model to multilayered and anisotropic foundations, 
incorporating nonlinear soil behavior, and validating the theoretical predictions through physical 
experiments and field data. 
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