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This study looks into the integration of Sentinel-2 and Landsat 8 satellite imagery with machine
learning algorithms for enhanced crop yield prediction and agricultural monitoring. The use of
remote sensing technologies has transformed precision agriculture through real-time assessment of
vegetation health, soil conditions, and environmental changes. A good complement to this long-
term history and thermal imagery from Landsat 8, Sentinel-2 has high spatial resolution and high
revisit cycles to enable a robust dataset for accurate yield estimation. Machine learning models,
which include decision trees, random forests, and neural networks, have started processing vast
datasets in agriculture that offer predictive insights into crop growth patterns, resource optimization,
and risk management. Data pre-processing techniques such as atmospheric correction and cloud
removal are very essential in making the satellite imagery reliable, improving the accuracy of
vegetation indices and predictive models. Even though data quality, model interpretability, and high
implementation costs are still issues, advances in artificial intelligence and deep learning have been
refining remote sensing applications. The study highlights the transformative potential of
integrating satellite technology and machine learning to enhance food security, optimize resource
utilization, and promote sustainable farming practices and pave the way for more precise and data-
driven agricultural decision-making.
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1. INTRODUCTION

Crop yield prediction is a prediction of accurate estimates of potential yields for specific crops at
specific times during seasons of specific regions [1]. It involves precision predictability in the
application that requires science combined with knowledge about local areas of location and types
of crops produced therein [2]. Diverse data sets comprising weather, seed genetics, properties of the
soil, management factors, statistical databases, etc, are applied for estimations. An experimentally
proven multi-level algorithm is implemented in arriving at yield computations [3].

1.1.1. Advantages of Predicting Yield
Precise yield predictability offers a multitude of benefits for agricultural stakeholders [4]:

» Enhanced food security: Governments and organisations may anticipate potential food
shortages and take precautions with the help of accurate yield projections. To ensure its
residents have consistent access to food, the government may prepare ahead of time for
imports, oversee export regulations, and allocate resources effectively.

» Improved farm management: Businesses may reduce their impact on the environment, save
money, and increase efficiency by planning production around anticipated yields and making
the most of available resources (such as water, fertiliser, and pesticides).

» Informed decision-making: By using data-driven yield estimates, farmers may minimise
losses and maximise revenues by strategically planting different crop kinds, obtaining inputs,
and harvesting the crop.

» Risk management in financial: In order to tailor their services, insurance companies and
banks use yield forecast data when evaluating agricultural loans and crop insurance. Both
farmers and lenders will feel less danger as a result of this.

> Better market forecast: Yield predictability at the regional and national levels leads to better
market forecast and stabilizes food prices without any drastic fluctuations that would adversely
affect the farmer, businessperson, and the consumer.

» Supply-demand management has improved: the predictability of yield means a reduction in
having to buffer for seed companies and associated waste. Food producing companies can get
better at stock management, avoid wasting space and reduce waste.

1.2. Overview of Sentinel-2 and Landsat 8 imagery

The sentinel-2 and Landsat 8 are among the most applied remote sensing satellite systems that
provide vital information for monitoring agriculture, environmental management, and land cover
change [5]. These satellites offer high-resolution, multispectral imagery that helps in the evaluation
of vegetation health, soil condition, and growth patterns of crops [6]. Their integration with
advanced computational techniques, such as machine learning, has significantly improved the
accuracy of crop yield prediction models.

Part of the Copernicus program by the European Space Agency, Sentinel-2 offers systematic and
continuous Earth observation data. It comprises two satellites: Sentinel-2A and Sentinel-2B. These
two satellites work in tandem to create global coverage with a revisit time of five days [7]. Fitted
with MSI, Sentinel-2 captures data of 13 spectral bands covering from the visible range to the
shortwave infrared range. They include indices such as NDVI, EVI which are used for monitoring
vegetation accurately [8]. These, in turn help in the plant health assessment of biomass
accumulation besides water stress evaluation. The 10 to 60 meters spatial resolutions of Sentinel-2
bands makes it very much useful for the precision agriculture industry, where exact field-level
understanding of the crop under cultivation is quite often required.
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Landsat 8 is a project of NASA and the USGS as part of the long-running Landsat program,
initiated in 1972 to collect Earth observation data. It captures imagery at 11 spectral bands,
including visible, near infrared, shortwave infrared, and thermal infrared wavelengths. Its OLI and
TIRS can accurately assess the surface temperature and land cover, which is necessary for detecting
crop stress, soil moisture levels, and irrigation efficiency [9]. With a spatial resolution of 30 meters
for most bands and a revisit cycle of 16 days, Landsat 8 is ideal for monitoring long-term
agricultural trends, tracking deforestation, and analyzing land use changes over vast areas.

These sources provide free, open-access data to researchers, agronomists, and policymakers. When
used in tandem, these datasets enhance the temporal resolution, enabling researchers to observe crop
dynamics and environmental changes more frequently. For example, Sentinel-2's five-day revisit
cycle is complemented by Landsat 8's longer 16-day cycle, so crop development in relation to
seasonal changes can be better monitored. With these, the machine learning models to be used in
yield estimation, soil fertility analysis, and pest infestation will be improved because the two
satellites will improve the spectral information [10].

The fusion of Sentinel-2 and Landsat 8 imagery ensures a comprehensive agricultural monitoring
approach with real-time as well as historical information, helping to make better informed decisions
by all stakeholders. Evolution in satellite technology will lead the integration of artificial
intelligence and cloud computing to add more precision into agriculture to guarantee sustainable
food and resource management [11].

1.3. Applications Of Remote Sensing

There has been a lot of effort to use remote sensing to investigate agriculture, and the field is
becoming increasingly popular [12]. From basic tasks like field identification to more complex ones
like precision farming, remote sensing has many uses in agriculture. First, let's take a brief look at
the ways remote sensing has benefited farming [13]:

1. Land Cover Mapping: Land cover mapping is a popular use case for remote sensing. It is
possible to distinguish between every type of land cover on Earth through the use of land cover
mapping. When deciding what crops to grow and how much of each to harvest, land cover is a
key factor. In crop management, crops are chosen based on field and soil types, and treatment
procedures are developed to increase crop yields while decreasing the likelihood of damage
caused by pests or diseases. To accomplish this, several factors such as weather patterns both
present and historical, models of crop production, soil characteristics, and market
circumstances are integrated with the various crop kinds.

2. Precision Agriculture: Precision agriculture, also referred to as Precision farming, describes
the set of techniques, instruments, and management methods which help to ensure that
treatments given to crops enhance growth and returns of a farm through adapting applications
according to changes in biophysical conditions prevailing across the agricultural area instead of
an identical application all over the land. It has been feasible, due to advancements in remote
sensing and the addition of functionalites in GIS, to characterize and model almost every crop,
with a mapping feature-which puts a lot into GIS and remote sensing for a better future of
precision agriculture.

3. Irrigated Land Cover Mapping: Another important application of remote sensing in
agriculture is Irrigated Land Cover Mapping. The observation from space of the Earth's surface
offers a reliable, cost-effective, and accurate synoptic information. The data assist in
agricultural land cover mapping, especially on the land cover mapping theme. Image
classification systems are often used to make current strategies for characterizing agricultural
land cover.
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4. Crop health monitoring: By analysing spectral data collected from satellites, aeroplanes, or
instruments on the ground, remote sensing can keep an eye on the growth and well-being of
crops. A farmer can use this data to pinpoint how much water, fertiliser, or pesticide their crops
need at specific stages.

5. Yield estimation: More recently, agricultural yields may be estimated using plant height,
biomass, and chlorophyll content, thanks to advancements in remote sensing. satellite imaging.
Farmers may make better use of this information when planning harvests and managing to
crops.

2. EVOLUTION OF PRECISION AGRICULTURE

The path to precision agriculture is an evolutionary process under the influence of technology and
our growing understanding of natural ecosystems. Mechanization, coming at the beginning of the
20th century, brought about a complete revolution in agriculture based on experience and intuition
[14]. The true precursor to precision agriculture, however, was the Green Revolution that swept the
earth in the 1950s and 1960s, promoting high-yielding crops and new agricultural practices to
increase global production by leaps and bounds [15]. In its successes, the approach taken of the
Green Revolution was a one-size-fits-all approach as all fields were treated as identical units. But
fields are heterogenous, varying in soil properties, moisture, and nutrient content. It is during this
time that site-specific crop management emerged in the late 1980s and was said to be the birth of
precision agriculture. Precision agriculture, on the other hand, started booming in the 1990s when
the Global Positioning System was invented.

GPS technology allowed farmers to map their field variations in an accurate manner. This meant
applying inputs in the right amounts and avoiding waste. At the same time, yield monitors were
developed to assist farmers measure the yield variations across different fields [16]. The 2000s have
brought forth VRT that allows the applications of different input rates in various parts of the field
under the data obtained from GPS and yield monitors. With the integration of GIS in precision
agriculture, it has enabled the collection, storage, analysis, and display of geographically referenced
information that can further improve the precision of agricultural practices [17].
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Figure 1: Timelines of agricultural revolutions [18]
2.1. Remote Sensing Technologies

While many technologies have shaped the evolution of precision agriculture, remote sensing has
been one of the most influential. Remote sensing is the process of obtaining information about an
object or area without physically touching it. It is used in a variety of ways in agriculture, including
crop health monitoring, yield prediction, and irrigation management. There are two types of remote
sensing technologies active and passive. Active remote sensors emit radiation and measure the
reflected signal, whereas passive sensors measure natural radiation emitted or reflected by the
object or area of interest. In the first generation of remote sensing technology in agriculture, aerial
photography was primarily utilized. Satellites became the dominant remote sensing platform during
the last quarter of the 20th century. Large-scale agricultural monitoring through satellite remote
sensing enjoys many advantages. For instance, satellites achieve wide coverage and frequent
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revisits [19]. They may also offer multiple spectral bands or resolution. However, in real
applications, there are some limitations, and these might include lower spatial resolution and
increased sensitivity to atmospheric conditions. Recently, an alternative tool has gained significant
attention: Unmanned Aerial Vehicles, or drones. Drones can capture high-resolution imagery at low
altitudes, enabling detailed monitoring of individual plants [20]. With advancements in technology,
multispectral and hyperspectral imaging have emerged. Multispectral imaging captures images in
specific, broad bands of the electromagnetic spectrum, while hyperspectral imaging captures images
in many very narrow bands. These technologies allow for a more detailed and accurate assessment
of crop health, nutrient status, and other critical parameters[21].

Active Remote Sensing

Active remote sensing systems produce their energy source. One of the most common forms of
active remote sensing is radar, which is short for Radio Detection and Ranging. It emits radio waves
and measures the time delay for the signal to bounce back after hitting the target. The lag is then
measured in a manner of distance, which will then allow the creation of a three dimensional image
of the object or space [22]. LIDAR is another form of active remote sensing technology, in which
the light energy takes the form of a pulsed laser, which measures variable distances to Earth. This
technology generates highly accurate three-dimensional information regarding the Earth's shape and
its surface properties and thus finds a high use in topographic and elevation mapping for agricultural
landscapes [23].

Passive Remote Sensing

Passive remote sensing systems are those that rely on the natural radiation emitted or reflected from
an observed surface. They are quite common in precision agriculture and come in two categories:
multispectral and hyperspectral sensors. Multispectral sensors measure certain bands of the
electromagnetic spectrum, typically between the visible and near-infrared regions. The application
of these sensors in precision agriculture includes crop health monitoring, yield prediction, and
detection of pests and diseases [24]. Hyperspectral sensors measure hundreds of narrow, contiguous
spectral bands over the whole visible, near-infrared, and short-wave infrared parts of the
electromagnetic spectrum. These sensors make it possible to visualize the scene with greater
resolution and identify the same materials by their spectral signatures.

Platforms for Remote Sensing

Remote sensing technologies may be mounted on different platforms that have different advantages
and disadvantages. Satellites give a wide area of coverage, and the data are highly repeatable;
however, data from satellites could be affected by cloud cover and the temporal resolution may be
compromised [25]. Aircraft, on the other hand, can take higher spatial resolutions and are also
flexible in operation, but these are costlier and restricted to flight regulations. UAV, or drone, is an
emerging tool in precision agriculture; it can fly relatively low and slow compared to aircraft. This
enables a higher resolution for images of much higher resolution than can be accomplished by
manned aircraft. The low cost and ease of use make drones accessible to individual farmers [26]

Table 1: Remote Sensing Technologies [27]

Tec_frl;géogy Active/Passive Advantages Limitations
Radar Active Can operate in all vye_ather and Complex_data
lighting conditions processing
. . . . Costly, complex
LiDAR Active Highly accurate 3D mapping data analysis
Multispectral Passive Broad applications in agriculture Limited spectral
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Sensors resolution
Hyperspectral . . . Comple>_< data
Passive High spectral resolution analysis, high data
Sensors
volume
Affected by cloud
Satellites Platform Broad, consistent coverage cover, limited
temporal resolution
Higher cost,
Aircraft Platform High spatial resolution, flexible use subject to flight
regulations
High-resolution imagery, accessible L'"."tEd flight
Drones Platform X duration, weather-
and affordable
dependent
2.2. Comparison of Sentinel-2 and Landsat 8 data
Table 2: Comparison of Sentinel-2 and Landsat 8 data [28]
Feature Sentinel-2 Landsat 8
Both the Sentinel-2A and
Launch Date Sentinel-_ZB spacecrafts were Landsat 8 launched on
launched in the years 2015 and February 11, 2013
2017, respectively.
An ESA-led initiative as part of Part of the long-running
. . ) Landsat Earth Observation
Mission the Copernicus Earth Observation
Program Program managed by
NASA/USGS
Orbit Type Sun-synchronous orbit, 786 km Sun-synchror_mus orbit with
above Earth's surface on average | an average altitude of 705 km
5-day revisit time (with both 16-day revisit cycle
Revisit Time Sentine_l-2A and_SfantineI-ZB in (depending on Iocz_itior_L can
operation, providing frequent be less frequent in high-
coverage) latitude regions)
Visual, near-infrared, and
The visibility bands have a range shortwave infrared bands
. of 10 meters, the red-edge and typically have a range of 30
Spatial .
Resolution shortwave infrared bands of_20 _ meters, whereas thermal
meters, and the atmospheric infrared bands have a range
correction bands of 60 meters. of 100 meters.
13 bands ranging from visible 11 bands, including visible,
light to shortwave infrared, near-infrared, and thermal
Spectral . . . . .
Bands mclqdlng unique bands for mfrareq bands, suitable for
vegetation monitoring and water vegetation, land cover, and
content analysis temperature analysis
12-bit (providing a greater range 12-bit (providing similar
Radiometric of values for pixel intensities, detailed information as
Resolution | allowing better detection of subtle | Sentinel-2 in terms of pixel
changes) intensity range)
All data collected by Sentinel-2 | Data collected by Landsat 8 is
Data : ) o
Availability are freel_y available through the | freely available online via the
Copernicus Open Access Hub. USGS Earth Explorer
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website.
The Operational Land Imager
. (OLI) uses infrared and
Images are captured over thirteen . ) .
Key : . visible light, while the
different spectral bands using the
Instruments Multi-Spectral Instrument (MSI) Thermal Infrared Sensor
P ' (TIRS) collects data on
temperatures.
Ongoing data collection since Ongoing since 2013’ part of
. . . the Landsat continuity
Temporal 2015, with continuous operations . ; q
Coverage expected as part of the Copernicus program; continuous data
roaram collection starting from
prog Landsat 1 in 1972
. | ith Sensitive to cloud cover, but
Cloud Cover _Se_nsmve toc O.Ud cover, wit longer revisit time can
Sensitivit limited data availability in areas mitigate aans in cloud-
y with frequent cloud cover gate gap
covered areas

3. MACHINE LEARNING IN CROP YIELD PREDICTION

The agricultural sector plays a crucial role in meeting the nutritional needs of the world's expanding
population [29]. Farmers must maximise their resources to reduce wastage and maximise
production if they are to meet the rising demand for food. Machine learning has emerged as a potent
tool for modern farmers to use in their pursuit of the modern agricultural goal line of predicting and
analysing harvest growth. Precision agriculture, sometimes known as "smart farming,” is a
relatively new method of farming that makes use of cutting-edge technological tools to maximise
harvest yield while minimising input costs. The goal of smart farming is to maximise harvest yield
with minimal input of water, fertiliser, and energy [30].

The processes for crop analysis and prediction that are based on machine learning and the 10T are
shown in Figure 2. When thinking about smart farming, the Internet of Things is a crucial
technology. The optimal times to sow, irrigate, and harvest crops may be defined using data
obtained from Internet of Things (IoT) devices that assess soil moisture, temperature, and other
environmental parameters. By using Internet of Things (10T) sensors, we can increase yield quality
and quantity by precisely dosing crops with water and fertiliser [31].

)z Q TR
? | 8
v

, <= Machine Learning
*Data cleaning ® eNaive Bayes Classifier
eDimensionality Reduction n *Multilayer Perception
*Sampling data ~ eDecision Tree

Te RS .

VQ loT Data Collection
" eRatio of Nitrogen content
sTemperature

*pH value of the soil
*Rainfall *Feature extraction *Random Forest
*Humidity *Abnormal data detection *Logistic

*Ratio of Phosphorous *Data transformation *K-nearest classifier
content

*Ratio of Potassium content

Data Preprocessing

Figure 2: Crop study and forecast using loT and machine learning [32]

ML applications have taken successful steps in decision-making in recent years, and they have
penetrated our lives in many domains, from the health industry to the defence industry, from
education to urbanisation [33]. Simultaneously, it started making tech and information solutions by
laying the groundwork for the new search engine architecture, which includes ChatGPT, Google
Bard, and other tools based on artificial intelligence. Numerous research firms have shown that new
trends will continue to expand across different platforms. Regarding this, the implementation of
machine learning models will change several domains, such as chip design and traffic predictions,
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and the influence of these systems and solutions inside technology would make them a big
multiplier [34].

In essence, machine learning algorithms are required to gather bulk and quality data. If you want
reliable results and precise forecasts, you need high-quality and large-scale data collecting [35]. In a
nutshell, "big data™ describes data that is large, fast, and diverse. For example, the size of the corpus
allows for comprehensive findings to be produced by the data and guarantees a decrease in
randomness [36]. Simultaneously, there's need for improvement in the organisation of big data
analyses. The success rate of an analysis will be enhanced if data is used from many sources or
datasets. Sensors, social media, data networks, physical gadgets, the financial market, and
healthcare facilities are just a few of the many places that may provide data. Web collection, access
pathways, and application programming interfaces all provide data access. Both static datasets and
stream data are possible forms of the data. When processing data, it is common practice to include
data from several sources. Machine learning algorithms rely heavily on clean, pre-processed data,
which makes data collection and preparation all the more important [37].

For example, this algorithm type can sift through mountains of data collected by Internet of Things
(1oT) devices. This area of study has the potential to revolutionise agricultural production and yield
forecasting, and it has grown at a rapid pace. In order for computers to learn and, in turn, become
better over time, machine learning algorithms examine data using statistical and mathematical
models and algorithms to provide predictions [38]. Data acquired from farms, particularly the
agricultural production region, may be used to train machine learning algorithms. This data can
include weather patterns, soil characteristics, crop growth phases, and pest and disease outbreaks.
Machine learning algorithms may utilise this data assessment to provide very accurate predictions
about yield, quality, and growth [39].

The use of data and technology to optimise agricultural practices like fertilisation, irrigation, and
pest management in order to increase yield and quality is known as precision farming, and it is a
significant use of machine learning in agriculture [40]. Machine learning algorithms can sift through
mountains of data collected from sources like drone footage, soil sensors, and satellite images to
create detailed maps of nutrition and moisture levels, as well as maps of crop growth. In order to
maximise harvest yield while minimising water loss, farmers will be able to use these maps to
precisely regulate irrigation and fertiliser applications [41]. Machine learning also aids farmers in
weighing market demand and environmental factors when deciding which crops to sow. By
examining past market data and weather trends, machine learning algorithms are able to forecast the
demand for certain crops. As a result, the model can suggest the best times and places to plant [42].
Farmers may increase their profitability and decrease the likelihood of crop failure with this
method. Machine learning can assess the quality of harvested crops in addition to forecasting their
growth and yield. To guarantee that fruits and vegetables are of high quality and maturity, machine
learning algorithms can forecast their form, colour, and texture. Only the highest quality fruit and
vegetables are offered to customers in this fashion, thanks to efficient harvesting [43,44].

Deploying machine learning in agriculture is fraught with challenges, such as insufficient data
foundation, prohibitive sensor and equipment costs, and the requirement for specialised expertise in
solution development and maintenance. Machine learning's potential for profit in agriculture will
become clearer as more farms adopt precision agriculture and collect data. It is worth noting that
machine learning is still in its early stages in the agricultural sector, and that further study is needed
to fully harness the potential of this technology. So far, the outcomes are encouraging, and it's
probable that machine learning will become more crucial [45].

Table 3: Research Studies on Machine Learning and Smart Farming

Author Name Topic Covered Research Study Title
Lietal. (2022) | Machine learning | Developed machine learning " Machine
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[46]

models for crop
yield prediction

models to predict wheat yield
in China using multi-source
environmental data (climatic,
soil, remote sensing) and
tested various machine
learning algorithms.

Learning Models
for Predicting
China's Wheat

Yield Using
Environmental
Data from Multiple

Sources"
Conducted a systematic
literature review on crop "Systematic
Van Crop yield yield prediction models, Review on
Klompenburg orediction using analyzing machine learning Predicting Crop
et al. (2020) machine learnin techniques like ANN, SVM, Yield using
[47] g and deep learning for Machine Learning
improving prediction Techniques™
accuracy.
Application of investigated how Wel! "Application c_)f
Kuradusenge machine learning random forests_and gradient | Machine Learning
etal. (2023) | for Irish potato and bo_ostlng mgchlnes fore_cast fo_r Predlctl_ng
t48] maize yield maize and _Irlsh potato y|el_ds Yield of Irish
orediction by using climate and satellite Potatoes and
information. Maize"
Introduced a six-domain
Smart farming ~ smart fa}rming mod(_al "Smart Farming
Xu et al. approach using loT, incorporating loT devices, | Approach Based on

(2021) [49]

cloud computing,
and Al

cloud computing, and Al,
highlighting the benefits and
challenges of digital
agriculture.

loT, Cloud
Computing, and
Al"

Moysiadis et
al. (2022) [50]

Cloud computing
for smart farming

Developed a cloud
computing-based web
application using
microservices architecture for
real-time data collection and
analysis, facilitating decision-
making in crop management.

"Cloud
Computing-Based
Web Application
for Smart Farming

Using

Microservices
Architecture”

Ranjan et al.
(2022) [51]

Al in soil and crop
management

Investigated Al-powered
decision support systems for
optimizing irrigation,
fertilization, and pest control
strategies in precision
agriculture.

"Artificial
Intelligence in Soil
and Crop
Management"

Oré et al.
(2020) [52]

Drone-borne
DInSAR for crop
growth monitoring

investigated the application
of Differential
Interferometric Synthetic
Aperture Radar (DInSAR),
which is carried by drones,
for high-resolution crop yield
and health estimates.

"Use of Drone-
Borne DINSAR for
Crop Growth
Monitoring"

Gehlot et al.
(2022) [53]

Deep learning in

crop production

Conducted technical analysis

" Technical

comparing deep learning

Evaluation of
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prediction models (CNNs, LSTMs) and | Machine Learning
traditional machine learning | and Deep Learning

techniques in predicting crop for Crop
production. Production
Prediction

3.1. Machine Learning Algorithms In Agriculture
1. Naive Bayes

The Naive Bayes model, which is based on Bayes' theorem, is often used for classification problems
in numerous applications. Multinomial, Bernoulli, and Gaussian algorithms are the three that make
up Naive Bayes [54]. When it comes to classification difficulties, the Naive Bayes Algorithm is
absolutely indispensable. The system is based on the premise that all characteristics have the same
chance of occurring and that these chances are completely separate from one another. After another
event has taken place, the Bayes theorem determines the probability of the third event taking place.
Bayes theorem is utilised in multi-class classification. Furthermore, as compared to other ML
approaches, it is both faster and easier to develop. Little data is needed for training. It works with
both continuous and discrete data. It doesn't care about superfluous features and can scale up or
down quite well.

2. Decision Trees

In supervised machine learning, decision trees, which are similar to flowcharts, are very commonly
used for classification and prediction. A decision tree (DT) can be decomposed into a set of rules,
where each path from the root node to a leaf node represents a different rule. In this tree structure,
every leaf node is a class, which is achieved when an attribute satisfies the condition given by the
previous branch. The internal nodes in this structure act as decision nodes, which can be interpreted
as tests, conditions, or attributes used to make the classification or prediction [55].

3. KNN

Classification and regression issues are both addressed by utilising a KNN-based machine learning
approach. Algorithms in supervised ones use labelled data. There are a few of techniques to
calculate the distances between locations, which is the basis of the procedure. Always keep in mind
that the distance can only be positive or zero [56]. One way to achieve this is by using the absolute
values, square root, or raising the distance to a certain power. Prior to using the KNN method, it is
imperative that all labelled data undergo pre-processing. The first step is to standardise all of the
data. When there are too many features, KNN stops working, hence it's necessary to do feature
selection to remove the unimportant ones. Please complete the fields that are blank. In every other
case, the specific record must be deleted. Adding more samples to the train set might boost
performance. One major drawback of KNN is that computational costs and algorithmic speed both
rise as dataset sizes get larger.

4. Random Forests (RF)

As an example of ensemble learning, the RF approach increases a model's efficiency by connecting
several classifiers to tackle a difficult task. The resultant "forest" using this technique is really just a
collection of decision trees. Random RF characteristics are chosen at each decision split [57]. The
connection among trees is reduced by the selection of attributes that aid in prediction and increase
efficiency. After dividing the dataset into smaller parts, the The final prediction that a Random
Forest machine learning classification method produces is by combining the multiple decision trees.
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It comes as a form of ensemble learning under the Bagging technique. Here, using randomly
selected subsets of rows and features of the original dataset, decision trees are constructed, which
can be suitable for both classification and regression tasks. Also, Random Forest enhances the
accuracy of the model, overcomes overfitting, and it performs really well when dealing with large
data of high dimensions.

3.2. Advantages and challenges of ML-based yield prediction
Advantages of Machine Learning-Based Yield Prediction [58]

1. Improved Accuracy: ML algorithms can research a complex data set to highly accurately
predict crop yield, including any variables, be it weather conditions, soil health, or historical.

2. Real-time Decision Making: ML algorithms can process real-time data. This makes the farmer
have an opportunity to take decisions based on the real-time
information about crop and environmental health [59].

3. Resource Optimization: Accurate yield prediction helps optimize water, fertilizers, and
pesticides resources in that it becomes efficient and does not waste its share of them.

4. Risk Management: The ML models can predict variations inyield and environmental
risks that will enable the farmer to mitigate risks such as adverse weather or pest
outbreaks.

5. Crop Selection and Breeding: ML can be appliedinthe selection of crops
most suitable for a given region and identifying traits for selective breeding
that improve crop performance and resilience.

Challenges of Machine Learning-Based Yield Prediction

1. Data Quality and Availability: In ML models, high-quality and reliable data are expected.
Lack of correct data normally makes more errors on the wrong side of prediction, especially for
developing countries.

2. Data Integration and Compatibility: Weather, soil, and yield data integration from multiple
sources might become complex and generate compatibility issues [60].

3. Complexity and interpretability of ML models: The complexity of deep learning models
often inhibits their interpretability. This tends to lower the confidence level of farmers in such
results [61].

4. Need for expertise: The successful deployment of ML models requires specialized knowledge
in both data science and agriculture, which acts as a barrier for most farmers.

5. Cost of Technology and Infrastructure: The initial investment and maintenance costs for
ML-based yield prediction, including data collection devices and computing infrastructure, are
likely to be too high for small-scale farmers.

4. DATA INTEGRATION AND PRE-PROCESSING
4.1. Fusion of Sentinel-2 and Landsat 8 imagery

Integrating Sentinel-2 and Landsat 8 imagery combines data from both satellite systems to enhance
the precision and reliability of remote sensing applications, especially in agriculture and
environmental monitoring [62]. Sentinel-2, managed by the European Space Agency (ESA), offers
high spatial resolution and frequent revisit intervals, making it well-suited for detailed vegetation
assessments [63]. On the other hand, Landsat 8 offers NASA and the USGS with ample historical
datasets with a moderate spatial resolution and a greater spectral range. The fusion of the datasets
exploits both systems' advantages, thereby facilitating better crop yield forecasts, more accurate
land use classification, and more detailed assessments of the environment.
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The most important advantage of merging Sentinel-2 and Landsat 8 data is the increase in temporal
resolution. Sentinel-2 revisits a location approximately every five days, while Landsat 8 returns
every 16 days [64]. By integrating both datasets, the effective revisit frequency increases, thereby
allowing for more consistent monitoring of crop conditions and land cover changes. This is
particularly valuable in agriculture, where frequent observations are necessary to track vegetation
health, soil moisture levels, and phenological variations [65].

Data fusion also improves spectral resolution since Sentinel-2 and Landsat 8 have different spectral
bands. Sentinel-2 has a broader band in the visible, near-infrared (NIR), and shortwave infrared
(SWIR) spectra, which helps in the detailed analysis of vegetation [66]. On the other hand, Landsat
8 has thermal infrared bands that give critical information about land surface temperatures, which
are necessary for drought stress monitoring and irrigation requirements. These datasets, combined
together, would help the researchers derive more accurate indices like Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Temperature (LST)
and better crop health and resource management assessments [67].

Combining these datasets helps to sidestep some of the shortcomings created by cloud cover [68].
Because both Sentinel-2 and Landsat 8 function in the optical spectrum, such data can be obscured
by clouds, thereby creating gaps or introducing untrustworthiness into their records [69].
Combining images taken from each satellite means that where clouds obscure one dataset at an
image location for a given period, those gaps are likely to be filled by data captured by the other
satellite, thereby increasing the probability of cloud-free observations for any given date [70].

An important application of Sentinel-2 and Landsat 8 fusion relates to machine learning and
predictive modelling [71]. Information multispectral and temporal extracted from the two sources
can improve the performance of algorithms in crop yield prediction, land cover classification, and
precision agriculture. Training the machine learning models using both datasets enables the
researchers to enhance the accuracy of predictions that relate to soil health, vegetation stress, and
productivity in crops. This leads to more efficient decision-making for farmers, policymakers, and
agricultural organizations [72].

Integration on such a high level has also some advantages though, but mixing Sentinel-2 and
Landsat 8 brings along with this some challenges -dissimilar spatial resolutions, sensor's calibration,
also the differences concerning data processing among others [73]. There is a larger spatial
resolution, 30 m, 10-20m for the two key spectral bands in Sentinel -2 compared with Landsat. This
means alignment would be some what different compared to the existing datasets. In some cases,
the radiometric calibration and the techniques used in atmospheric correction would vary to allow
for effective integration [74]. Advanced image processing techniques, such as machine learning-
based super-resolution and deep learning algorithms, are applied to harmonize the data and make it
more usable.

In conclusion, integration with Landsat 8 imagery adds a comprehensive approach toward
agricultural monitoring as well as yield prediction through the Sentinel-2 [75]. Complementing
strengths in such satellites here improve time, spectral as well as spatial resolution in a remote
sensing application, and accordingly, result in more accurate output [76]. Even if data fusion posed
some challenges, developing image processing technique and machine learning have further led to
better the feasibility of employing these merged data sets more operational [77].

4.1.1. Data pre-processing techniques

Data pre-processing is the process that needs to be performed before any type of analysis on
satellite images in order to ensure that the raw data obtained from remote sensing is accurate,
standardized, and suitable for further processing [78,79]. Pre-processing involves various
techniques applied to correct distortion, remove unwanted noise, and standardize imagery for
application with machine learning models or analytical assessments [80]. Atmospheric correction
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and cloud removal are the most important pre-processing techniques used on Sentinel-2 and Landsat
8 imagery [81].

4.1.2. Atmospheric Correction

Since images of satellites captured from space pass through the Earth's atmosphere before they
reach sensors, they introduce distortion in spectral reflectance values [82]. Such distortions arise
due to the presence of water vapor, aerosols, dust, and other gases within the atmosphere, which
scatter and absorb the sunlight. In the case of such interferences, remote sensing analyses are
adversely affected; in applications like vegetation monitoring, land cover classification, and crop
yield prediction [83]. Without atmospheric correction, the effects might distort the interpretation of
satellite images and make it difficult to compare data collected on different dates or from different
sources [84]. Hence, these atmospheric correction techniques are implemented to remove or
minimize the distortions in the reflectance values so that the latter better represents the actual
conditions of the Earth's surface.

Dark Object Subtraction is a widely used method for atmospheric correction. The basic assumption
here is that in certain regions of the image, like deep water bodies or shadowed areas, near-zero
reflectance is expected in some spectral bands [85]. Reflectance values in such regions are then
regarded as errors introduced by atmospheric scattering. This unwanted signal is subtracted from
the entire image [86]. DOS thus helps correct the reflectance values. This way, the data can be
trusted further. The technique is simple and computationally efficient and is applied widely in a
number of remote sensing applications. However, this method is based on an assumption that there
exist truly dark objects within the scene, which might not always be the case [87].

More advanced in terms of atmospheric correction technique is the FLAASH, Fast Line-of-sight
Atmospheric Analysis of Spectral Hypercubes. The method, grounded on the physical process,
makes use of radiative transfer equations that represent how light and particles within the
atmosphere interact with one another [88]. Contrasting the DOS empirical approach, FLAASH
incorporates the factors of altitude, humidity, and aerosol content in an image for atmospheric
corrections, giving much better precision, particularly with hyperspectral and multispectral high-
resolution imagery. FLAASH is widely used in scientific researches and environmental monitoring
projects, given that it gives the best highly accurate surface reflectance values. However, it has vast
computational needs, requiring more complex data inputs in the atmosphere, and is relatively hard
to apply [89].

Sen2Cor is the specialized atmospheric correction tool developed for Sentinel-2 imagery. The
algorithm converts top-of-atmosphere (TOA) reflectance to bottom-of-atmosphere (BOA)
reflectance, thus enhancing the spectral analysis accuracy. Since Sentinel-2 data is predominantly
used for monitoring vegetation, agricultural assessments, and land cover mapping, Sen2Cor is the
most important one to ensure coherence in different images. It corrects for variations in atmospheric
conditions like changes in humidity and aerosol levels, which might otherwise affect the accuracy
of NDVI (Normalized Difference Vegetation Index). Therefore, Sen2Cor is commonly used by the
researchers and analysts working with Sentinel-2 data because it helps in the efficient automation of
atmospheric corrections [90].

Similarly, for the Landsat 8 imagery, LaSRC has been applied for atmospheric correction. It
corrects with physics-based corrections that are fine-tuned to be unique sensor characteristics of the
Landsat. These contributions include the solar angle, the aerosol thickness, and the water vapor
content. Data gathered during radically different periods would then be compared by using this code
on the Landsat imagery. This will come in very handy for long-term environmental studies,
monitoring deforestation, and analyzing agriculture productivity [91].

Atmospheric correction forms one of the fundamental preprocessing processes in remote sensing.
This is because atmospheric correction allows for reliable and consistent analyses of images. It
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becomes imperative, especially at the integration point of data gathered from various platforms,
such as Sentinel-2 and Landsat 8.Because these satellites have different sensor characteristics and
revisit frequencies, atmospheric correction standardizes the reflectance values of the data, thus
making it easy to fuse and compare the data. Whether using simple empirical methods as DOS or
advanced physics-based algorithms like FLAASH, Sen2Cor, and LaSRC, atmospheric correction
remains an essential procedure for ensuring high-quality satellite data for various applications in
agriculture, forestry, and environmental monitoring.

Cloud Removal

The major challenge in optical satellite remote sensing is cloud cover, which covers the land surface
and limits the ability to analyze images. Since optical sensors depend on visible and infrared light to
capture surface features, the presence of clouds and their shadows can result in missing or distorted
data. This is the most challenging aspect in agricultural monitoring, forest management, and land
classification, where the imagery should be clear to accurately assess the issues. Several techniques
have been designed to remove the clouds from imagery so that an area covered with clouds can be
detected, masked, or even replaced to yield reliable data to be further processed [92].

The most common process used for cloud removal is called cloud masking. It identifies the pixels
covered by clouds and removes those pixels from the dataset. There are many algorithms that have
been successfully developed over time, including Fmask (Function of Mask) and MAJA (MACCS-
ATCOR Joint Algorithm) [93]. These methods use spectral characteristics and thermal bands to
distinguish clouds from the land and water surfaces. With reflectance values in certain wavelengths,
including SWIR and TIR, these algorithms are able to accurately identify clouds and their shadows.
Once masked, cloud-covered pixels do not pollute subsequent analyses of images. It has
applications in high-precision remote sensing data where the requirement could be something like
crop health assessment and environmental monitoring.

The second method of cloud removal is temporal compositing. In this, a composite image with
minimum cloud cover is generated instead of using an individual image. Since satellite sensors
return to the same location several times, cloud-free pixels in one image can be replaced by cloud-
affected pixels in another image [94]. This technique is widely applied in vegetation monitoring and
land cover mapping, where seasonal variations in surface conditions need to be analyzed over time.
Temporal compositing helps construct a more complete and accurate representation of the land
surface by selecting the clearest pixels from a series of images.

Beyond improving the cloud removal process, the data fusion techniques merge images coming
from various satellite resources. For example, the revisit time and spectral characteristics are
different for Sentinel-2 and Landsat 8, and thus each becomes a complementary source for cloud-
free data. Pixels in the image coming from another satellite resource can fill gaps and complement
the cloud-filled area in the other dataset. This cross-sensor approach improves data availability and
ensures a more holistic spatial and temporal coverage. Data fusion is the most useful in applications
that require constant monitoring such as precision agriculture, land use change detection, and
disaster responses.

Advances in Al, such as improved machine learning, have thus enabled improved methods of cloud
removal. This now includes reconstruction of covered areas with deep learning models using CNNs
[95]. These models are trained on large datasets of cloud-free imagery and learn to predict surface
features that are missing in spatial patterns. Machine learning-based approaches can generate
realistic representations of cloud-obscured regions by analyzing surrounding pixels and historical
data [96 - 98]. This technique is promising for high-resolution remote sensing applications, where
even small cloud-covered areas can significantly impact the accuracy of analysis .

Preprocessing steps in remote sensing include atmospheric correction and cloud removal as a way
to ensure that satellite imagery is as accurate and reliable as possible [99]. Providing multispectral
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and hyperspectral image quality is enhanced by these preprocessing methods through the
minimization of distortion attributable to the atmosphere and cloud cover, which will significantly
help in better decision-making terms in agricultural management, environmental monitoring, and
land classification [100]. The further development of satellite-based remote sensing for various
applications will be more effective by the integration of traditional methods with advanced machine
learning and data fusion approaches as technology continues to evolve.

5. CONCLUSION

The integration of Sentinel-2 and Landsat 8 imagery with machine learning algorithms significantly
enhances crop yield predictions and agriculture monitoring based on the complementarity of both
satellite systems. The high spatial resolution and high temporal capability of Sentinel-2 complement
long-term historical data and thermal imaging capability from Landsat 8, thus allowing a more
holistic approach toward agricultural assessment. This integration makes possible the establishment
of exact indices about vegetation; the monitoring in real time of the health of the soil; and the
prediction of crop yield, upon which it is possible for farmers, agronomists, and policymakers to
make data-driven decisions. Remote sensing applications evolved from simple land cover mapping
to advanced precision agriculture, optimizing resource use, mitigating risks, and improving farm
productivity in general. This further improves these capabilities through processing huge datasets on
weather patterns, soil properties, and crop growth, thus leading to smarter and more adaptive
agricultural practices. Challenges still abound in the form of data quality, model interpretability, and
high costs of implementation, which have so far restricted the full-scale adoption of these
technologies, especially for small-scale farmers. Effective data pre-processing techniques like
atmospheric correction and cloud removal are a critical step for making satellite images reliable.
Accuracy of satellite observations has been further enhanced by various DOS, FLAASH, and
Sen2Cor methods in cloud masking and data fusion to be used in crop monitoring applications.
Continued development in artificial intelligence and deep learning continues to take agricultural
analytics into uncharted territories, that is, making remote sensing more accurate and efficient.
Indeed, these make the resultant transformation of satellite technology and Al-driven analytics a
potent opportunity for the promotion of sustainable farming practices, enhancing food security, and
mitigating agriculture-related climate risks- an eventual case toward the widespread global adoption
of these transformative technologies.
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