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Abstract:  

 

This study looks into the integration of Sentinel-2 and Landsat 8 satellite imagery with machine 

learning algorithms for enhanced crop yield prediction and agricultural monitoring. The use of 

remote sensing technologies has transformed precision agriculture through real-time assessment of 

vegetation health, soil conditions, and environmental changes. A good complement to this long-

term history and thermal imagery from Landsat 8, Sentinel-2 has high spatial resolution and high 

revisit cycles to enable a robust dataset for accurate yield estimation. Machine learning models, 

which include decision trees, random forests, and neural networks, have started processing vast 

datasets in agriculture that offer predictive insights into crop growth patterns, resource optimization, 

and risk management. Data pre-processing techniques such as atmospheric correction and cloud 

removal are very essential in making the satellite imagery reliable, improving the accuracy of 

vegetation indices and predictive models. Even though data quality, model interpretability, and high 

implementation costs are still issues, advances in artificial intelligence and deep learning have been 

refining remote sensing applications. The study highlights the transformative potential of 

integrating satellite technology and machine learning to enhance food security, optimize resource 

utilization, and promote sustainable farming practices and pave the way for more precise and data-

driven agricultural decision-making.  
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1. INTRODUCTION 

Crop yield prediction is a prediction of accurate estimates of potential yields for specific crops at 

specific times during seasons of specific regions [1]. It involves precision predictability in the 

application that requires science combined with knowledge about local areas of location and types 

of crops produced therein [2]. Diverse data sets comprising weather, seed genetics, properties of the 

soil, management factors, statistical databases, etc, are applied for estimations. An experimentally 

proven multi-level algorithm is implemented in arriving at yield computations [3]. 

1.1.1. Advantages of Predicting Yield 

Precise yield predictability offers a multitude of benefits for agricultural stakeholders [4]:  

 Enhanced food security: Governments and organisations may anticipate potential food 

shortages and take precautions with the help of accurate yield projections. To ensure its 

residents have consistent access to food, the government may prepare ahead of time for 

imports, oversee export regulations, and allocate resources effectively. 

 Improved farm management: Businesses may reduce their impact on the environment, save 

money, and increase efficiency by planning production around anticipated yields and making 

the most of available resources (such as water, fertiliser, and pesticides). 

 Informed decision-making: By using data-driven yield estimates, farmers may minimise 

losses and maximise revenues by strategically planting different crop kinds, obtaining inputs, 

and harvesting the crop. 

 Risk management in financial: In order to tailor their services, insurance companies and 

banks use yield forecast data when evaluating agricultural loans and crop insurance. Both 

farmers and lenders will feel less danger as a result of this. 

 Better market forecast: Yield predictability at the regional and national levels leads to better 

market forecast and stabilizes food prices without any drastic fluctuations that would adversely 

affect the farmer, businessperson, and the consumer. 

 Supply-demand management has improved: the predictability of yield means a reduction in 

having to buffer for seed companies and associated waste. Food producing companies can get 

better at stock management, avoid wasting space and reduce waste. 

1.2. Overview of Sentinel-2 and Landsat 8 imagery 

The sentinel-2 and Landsat 8 are among the most applied remote sensing satellite systems that 

provide vital information for monitoring agriculture, environmental management, and land cover 

change [5]. These satellites offer high-resolution, multispectral imagery that helps in the evaluation 

of vegetation health, soil condition, and growth patterns of crops [6]. Their integration with 

advanced computational techniques, such as machine learning, has significantly improved the 

accuracy of crop yield prediction models. 

Part of the Copernicus program by the European Space Agency, Sentinel-2 offers systematic and 

continuous Earth observation data. It comprises two satellites: Sentinel-2A and Sentinel-2B. These 

two satellites work in tandem to create global coverage with a revisit time of five days [7]. Fitted 

with MSI, Sentinel-2 captures data of 13 spectral bands covering from the visible range to the 

shortwave infrared range. They include indices such as NDVI, EVI which are used for monitoring 

vegetation accurately [8]. These, in turn help in the plant health assessment of biomass 

accumulation besides water stress evaluation. The 10 to 60 meters spatial resolutions of Sentinel-2 

bands makes it very much useful for the precision agriculture industry, where exact field-level 

understanding of the crop under cultivation is quite often required. 
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Landsat 8 is a project of NASA and the USGS as part of the long-running Landsat program, 

initiated in 1972 to collect Earth observation data. It captures imagery at 11 spectral bands, 

including visible, near infrared, shortwave infrared, and thermal infrared wavelengths. Its OLI and 

TIRS can accurately assess the surface temperature and land cover, which is necessary for detecting 

crop stress, soil moisture levels, and irrigation efficiency [9]. With a spatial resolution of 30 meters 

for most bands and a revisit cycle of 16 days, Landsat 8 is ideal for monitoring long-term 

agricultural trends, tracking deforestation, and analyzing land use changes over vast areas. 

These sources provide free, open-access data to researchers, agronomists, and policymakers. When 

used in tandem, these datasets enhance the temporal resolution, enabling researchers to observe crop 

dynamics and environmental changes more frequently. For example, Sentinel-2's five-day revisit 

cycle is complemented by Landsat 8's longer 16-day cycle, so crop development in relation to 

seasonal changes can be better monitored. With these, the machine learning models to be used in 

yield estimation, soil fertility analysis, and pest infestation will be improved because the two 

satellites will improve the spectral information [10]. 

The fusion of Sentinel-2 and Landsat 8 imagery ensures a comprehensive agricultural monitoring 

approach with real-time as well as historical information, helping to make better informed decisions 

by all stakeholders. Evolution in satellite technology will lead the integration of artificial 

intelligence and cloud computing to add more precision into agriculture to guarantee sustainable 

food and resource management [11]. 

1.3. Applications Of Remote Sensing  

There has been a lot of effort to use remote sensing to investigate agriculture, and the field is 

becoming increasingly popular [12]. From basic tasks like field identification to more complex ones 

like precision farming, remote sensing has many uses in agriculture. First, let's take a brief look at 

the ways remote sensing has benefited farming [13]: 

1. Land Cover Mapping: Land cover mapping is a popular use case for remote sensing. It is 

possible to distinguish between every type of land cover on Earth through the use of land cover 

mapping. When deciding what crops to grow and how much of each to harvest, land cover is a 

key factor. In crop management, crops are chosen based on field and soil types, and treatment 

procedures are developed to increase crop yields while decreasing the likelihood of damage 

caused by pests or diseases. To accomplish this, several factors such as weather patterns both 

present and historical, models of crop production, soil characteristics, and market 

circumstances are integrated with the various crop kinds. 

2. Precision Agriculture: Precision agriculture, also referred to as Precision farming, describes 

the set of techniques, instruments, and management methods which help to ensure that 

treatments given to crops enhance growth and returns of a farm through adapting applications 

according to changes in biophysical conditions prevailing across the agricultural area instead of 

an identical application all over the land. It has been feasible, due to advancements in remote 

sensing and the addition of functionalites in GIS, to characterize and model almost every crop, 

with a mapping feature-which puts a lot into GIS and remote sensing for a better future of 

precision agriculture. 

3. Irrigated Land Cover Mapping: Another important application of remote sensing in 

agriculture is Irrigated Land Cover Mapping. The observation from space of the Earth's surface 

offers a reliable, cost-effective, and accurate synoptic information. The data assist in 

agricultural land cover mapping, especially on the land cover mapping theme. Image 

classification systems are often used to make current strategies for characterizing agricultural 

land cover. 



27  |  INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY       www.multijournals.org 

 

4. Crop health monitoring: By analysing spectral data collected from satellites, aeroplanes, or 

instruments on the ground, remote sensing can keep an eye on the growth and well-being of 

crops. A farmer can use this data to pinpoint how much water, fertiliser, or pesticide their crops 

need at specific stages. 

5. Yield estimation: More recently, agricultural yields may be estimated using plant height, 

biomass, and chlorophyll content, thanks to advancements in remote sensing. satellite imaging. 

Farmers may make better use of this information when planning harvests and managing to 

crops. 

2. EVOLUTION OF PRECISION AGRICULTURE 

The path to precision agriculture is an evolutionary process under the influence of technology and 

our growing understanding of natural ecosystems. Mechanization, coming at the beginning of the 

20th century, brought about a complete revolution in agriculture based on experience and intuition 

[14]. The true precursor to precision agriculture, however, was the Green Revolution that swept the 

earth in the 1950s and 1960s, promoting high-yielding crops and new agricultural practices to 

increase global production by leaps and bounds [15]. In its successes, the approach taken of the 

Green Revolution was a one-size-fits-all approach as all fields were treated as identical units. But 

fields are heterogenous, varying in soil properties, moisture, and nutrient content. It is during this 

time that site-specific crop management emerged in the late 1980s and was said to be the birth of 

precision agriculture. Precision agriculture, on the other hand, started booming in the 1990s when 

the Global Positioning System was invented. 

GPS technology allowed farmers to map their field variations in an accurate manner. This meant 

applying inputs in the right amounts and avoiding waste. At the same time, yield monitors were 

developed to assist farmers measure the yield variations across different fields [16]. The 2000s have 

brought forth VRT that allows the applications of different input rates in various parts of the field 

under the data obtained from GPS and yield monitors. With the integration of GIS in precision 

agriculture, it has enabled the collection, storage, analysis, and display of geographically referenced 

information that can further improve the precision of agricultural practices [17]. 

 

Figure 1: Timelines of agricultural revolutions [18] 

2.1. Remote Sensing Technologies 

While many technologies have shaped the evolution of precision agriculture, remote sensing has 

been one of the most influential. Remote sensing is the process of obtaining information about an 

object or area without physically touching it. It is used in a variety of ways in agriculture, including 

crop health monitoring, yield prediction, and irrigation management. There are two types of remote 

sensing technologies active and passive. Active remote sensors emit radiation and measure the 

reflected signal, whereas passive sensors measure natural radiation emitted or reflected by the 

object or area of interest. In the first generation of remote sensing technology in agriculture, aerial 

photography was primarily utilized. Satellites became the dominant remote sensing platform during 

the last quarter of the 20th century. Large-scale agricultural monitoring through satellite remote 

sensing enjoys many advantages. For instance, satellites achieve wide coverage and frequent 
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revisits [19]. They may also offer multiple spectral bands or resolution. However, in real 

applications, there are some limitations, and these might include lower spatial resolution and 

increased sensitivity to atmospheric conditions. Recently, an alternative tool has gained significant 

attention: Unmanned Aerial Vehicles, or drones. Drones can capture high-resolution imagery at low 

altitudes, enabling detailed monitoring of individual plants [20]. With advancements in technology, 

multispectral and hyperspectral imaging have emerged. Multispectral imaging captures images in 

specific, broad bands of the electromagnetic spectrum, while hyperspectral imaging captures images 

in many very narrow bands. These technologies allow for a more detailed and accurate assessment 

of crop health, nutrient status, and other critical parameters[21]. 

Active Remote Sensing  

Active remote sensing systems produce their energy source. One of the most common forms of 

active remote sensing is radar, which is short for Radio Detection and Ranging. It emits radio waves 

and measures the time delay for the signal to bounce back after hitting the target. The lag is then 

measured in a manner of distance, which will then allow the creation of a three dimensional image 

of the object or space [22]. LiDAR is another form of active remote sensing technology, in which 

the light energy takes the form of a pulsed laser, which measures variable distances to Earth. This 

technology generates highly accurate three-dimensional information regarding the Earth's shape and 

its surface properties and thus finds a high use in topographic and elevation mapping for agricultural 

landscapes [23]. 

Passive Remote Sensing  

Passive remote sensing systems are those that rely on the natural radiation emitted or reflected from 

an observed surface. They are quite common in precision agriculture and come in two categories: 

multispectral and hyperspectral sensors. Multispectral sensors measure certain bands of the 

electromagnetic spectrum, typically between the visible and near-infrared regions. The application 

of these sensors in precision agriculture includes crop health monitoring, yield prediction, and 

detection of pests and diseases [24]. Hyperspectral sensors measure hundreds of narrow, contiguous 

spectral bands over the whole visible, near-infrared, and short-wave infrared parts of the 

electromagnetic spectrum. These sensors make it possible to visualize the scene with greater 

resolution and identify the same materials by their spectral signatures. 

Platforms for Remote Sensing  

Remote sensing technologies may be mounted on different platforms that have different advantages 

and disadvantages. Satellites give a wide area of coverage, and the data are highly repeatable; 

however, data from satellites could be affected by cloud cover and the temporal resolution may be 

compromised [25]. Aircraft, on the other hand, can take higher spatial resolutions and are also 

flexible in operation, but these are costlier and restricted to flight regulations. UAV, or drone, is an 

emerging tool in precision agriculture; it can fly relatively low and slow compared to aircraft. This 

enables a higher resolution for images of much higher resolution than can be accomplished by 

manned aircraft. The low cost and ease of use make drones accessible to individual farmers [26] 

 

Table 1: Remote Sensing Technologies [27] 

Technology 

Type 
Active/Passive Advantages Limitations 

Radar Active 
Can operate in all weather and 

lighting conditions 

Complex data 

processing 

LiDAR Active Highly accurate 3D mapping 
Costly, complex 

data analysis 

Multispectral Passive Broad applications in agriculture Limited spectral 



29  |  INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY       www.multijournals.org 

 

Sensors resolution 

Hyperspectral 

Sensors 
Passive High spectral resolution 

Complex data 

analysis, high data 

volume 

Satellites Platform Broad, consistent coverage 

Affected by cloud 

cover, limited 

temporal resolution 

Aircraft Platform High spatial resolution, flexible use 

Higher cost, 

subject to flight 

regulations 

Drones Platform 
High-resolution imagery, accessible 

and affordable 

Limited flight 

duration, weather-

dependent 

2.2. Comparison of Sentinel-2 and Landsat 8 data 

Table 2: Comparison of Sentinel-2 and Landsat 8 data [28] 

Feature Sentinel-2 Landsat 8 

Launch Date 

Both the Sentinel-2A and 

Sentinel-2B spacecrafts were 

launched in the years 2015 and 

2017, respectively. 

Landsat 8 launched on 

February 11, 2013 

Mission 

An ESA-led initiative as part of 

the Copernicus Earth Observation 

Program 

Part of the long-running 

Landsat Earth Observation 

Program managed by 

NASA/USGS 

Orbit Type 
Sun-synchronous orbit, 786 km 

above Earth's surface on average 

Sun-synchronous orbit with 

an average altitude of 705 km 

Revisit Time 

5-day revisit time (with both 

Sentinel-2A and Sentinel-2B in 

operation, providing frequent 

coverage) 

16-day revisit cycle 

(depending on location, can 

be less frequent in high-

latitude regions) 

Spatial 

Resolution 

The visibility bands have a range 

of 10 meters, the red-edge and 

shortwave infrared bands of 20 

meters, and the atmospheric 

correction bands of 60 meters. 

Visual, near-infrared, and 

shortwave infrared bands 

typically have a range of 30 

meters, whereas thermal 

infrared bands have a range 

of 100 meters. 

 

Spectral 

Bands 

13 bands ranging from visible 

light to shortwave infrared, 

including unique bands for 

vegetation monitoring and water 

content analysis 

11 bands, including visible, 

near-infrared, and thermal 

infrared bands, suitable for 

vegetation, land cover, and 

temperature analysis 

Radiometric 

Resolution 

12-bit (providing a greater range 

of values for pixel intensities, 

allowing better detection of subtle 

changes) 

12-bit (providing similar 

detailed information as 

Sentinel-2 in terms of pixel 

intensity range) 

Data 

Availability 

All data collected by Sentinel-2 

are freely available through the 

Copernicus Open Access Hub. 

Data collected by Landsat 8 is 

freely available online via the 

USGS Earth Explorer 
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website. 

Key 

Instruments 

Images are captured over thirteen 

different spectral bands using the 

Multi-Spectral Instrument (MSI). 

The Operational Land Imager 

(OLI) uses infrared and 

visible light, while the 

Thermal Infrared Sensor 

(TIRS) collects data on 

temperatures. 

Temporal 

Coverage 

Ongoing data collection since 

2015, with continuous operations 

expected as part of the Copernicus 

program 

Ongoing since 2013, part of 

the Landsat continuity 

program; continuous data 

collection starting from 

Landsat 1 in 1972 

Cloud Cover 

Sensitivity 

Sensitive to cloud cover, with 

limited data availability in areas 

with frequent cloud cover 

Sensitive to cloud cover, but 

longer revisit time can 

mitigate gaps in cloud-

covered areas 

3. MACHINE LEARNING IN CROP YIELD PREDICTION 

The agricultural sector plays a crucial role in meeting the nutritional needs of the world's expanding 

population [29]. Farmers must maximise their resources to reduce wastage and maximise 

production if they are to meet the rising demand for food. Machine learning has emerged as a potent 

tool for modern farmers to use in their pursuit of the modern agricultural goal line of predicting and 

analysing harvest growth. Precision agriculture, sometimes known as "smart farming," is a 

relatively new method of farming that makes use of cutting-edge technological tools to maximise 

harvest yield while minimising input costs. The goal of smart farming is to maximise harvest yield 

with minimal input of water, fertiliser, and energy [30]. 

The processes for crop analysis and prediction that are based on machine learning and the IOT are 

shown in Figure 2. When thinking about smart farming, the Internet of Things is a crucial 

technology. The optimal times to sow, irrigate, and harvest crops may be defined using data 

obtained from Internet of Things (IoT) devices that assess soil moisture, temperature, and other 

environmental parameters. By using Internet of Things (IoT) sensors, we can increase yield quality 

and quantity by precisely dosing crops with water and fertiliser [31]. 

 

Figure 2: Crop study and forecast using IoT and machine learning [32] 

ML applications have taken successful steps in decision-making in recent years, and they have 

penetrated our lives in many domains, from the health industry to the defence industry, from 

education to urbanisation [33]. Simultaneously, it started making tech and information solutions by 

laying the groundwork for the new search engine architecture, which includes ChatGPT, Google 

Bard, and other tools based on artificial intelligence. Numerous research firms have shown that new 

trends will continue to expand across different platforms. Regarding this, the implementation of 

machine learning models will change several domains, such as chip design and traffic predictions, 
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and the influence of these systems and solutions inside technology would make them a big 

multiplier [34]. 

In essence, machine learning algorithms are required to gather bulk and quality data. If you want 

reliable results and precise forecasts, you need high-quality and large-scale data collecting [35]. In a 

nutshell, "big data" describes data that is large, fast, and diverse. For example, the size of the corpus 

allows for comprehensive findings to be produced by the data and guarantees a decrease in 

randomness [36]. Simultaneously, there's need for improvement in the organisation of big data 

analyses. The success rate of an analysis will be enhanced if data is used from many sources or 

datasets. Sensors, social media, data networks, physical gadgets, the financial market, and 

healthcare facilities are just a few of the many places that may provide data. Web collection, access 

pathways, and application programming interfaces all provide data access. Both static datasets and 

stream data are possible forms of the data. When processing data, it is common practice to include 

data from several sources. Machine learning algorithms rely heavily on clean, pre-processed data, 

which makes data collection and preparation all the more important [37]. 

For example, this algorithm type can sift through mountains of data collected by Internet of Things 

(IoT) devices. This area of study has the potential to revolutionise agricultural production and yield 

forecasting, and it has grown at a rapid pace. In order for computers to learn and, in turn, become 

better over time, machine learning algorithms examine data using statistical and mathematical 

models and algorithms to provide predictions [38]. Data acquired from farms, particularly the 

agricultural production region, may be used to train machine learning algorithms. This data can 

include weather patterns, soil characteristics, crop growth phases, and pest and disease outbreaks. 

Machine learning algorithms may utilise this data assessment to provide very accurate predictions 

about yield, quality, and growth [39]. 

The use of data and technology to optimise agricultural practices like fertilisation, irrigation, and 

pest management in order to increase yield and quality is known as precision farming, and it is a 

significant use of machine learning in agriculture [40]. Machine learning algorithms can sift through 

mountains of data collected from sources like drone footage, soil sensors, and satellite images to 

create detailed maps of nutrition and moisture levels, as well as maps of crop growth. In order to 

maximise harvest yield while minimising water loss, farmers will be able to use these maps to 

precisely regulate irrigation and fertiliser applications [41]. Machine learning also aids farmers in 

weighing market demand and environmental factors when deciding which crops to sow. By 

examining past market data and weather trends, machine learning algorithms are able to forecast the 

demand for certain crops. As a result, the model can suggest the best times and places to plant [42]. 

Farmers may increase their profitability and decrease the likelihood of crop failure with this 

method. Machine learning can assess the quality of harvested crops in addition to forecasting their 

growth and yield. To guarantee that fruits and vegetables are of high quality and maturity, machine 

learning algorithms can forecast their form, colour, and texture. Only the highest quality fruit and 

vegetables are offered to customers in this fashion, thanks to efficient harvesting [43,44]. 

Deploying machine learning in agriculture is fraught with challenges, such as insufficient data 

foundation, prohibitive sensor and equipment costs, and the requirement for specialised expertise in 

solution development and maintenance. Machine learning's potential for profit in agriculture will 

become clearer as more farms adopt precision agriculture and collect data. It is worth noting that 

machine learning is still in its early stages in the agricultural sector, and that further study is needed 

to fully harness the potential of this technology. So far, the outcomes are encouraging, and it's 

probable that machine learning will become more crucial [45]. 

Table 3: Research Studies on Machine Learning and Smart Farming 

Author Name Topic Covered Research Study Title 

Li et al. (2022) Machine learning Developed machine learning " Machine 
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[46] models for crop 

yield prediction 

models to predict wheat yield 

in China using multi-source 

environmental data (climatic, 

soil, remote sensing) and 

tested various machine 

learning algorithms. 

Learning Models 

for Predicting 

China's Wheat 

Yield Using 

Environmental 

Data from Multiple 

Sources" 

Van 

Klompenburg 

et al. (2020) 

[47] 

Crop yield 

prediction using 

machine learning 

Conducted a systematic 

literature review on crop 

yield prediction models, 

analyzing machine learning 

techniques like ANN, SVM, 

and deep learning for 

improving prediction 

accuracy. 

"Systematic 

Review on 

Predicting Crop 

Yield using 

Machine Learning 

Techniques" 

Kuradusenge 

et al. (2023) 

[48] 

Application of 

machine learning 

for Irish potato and 

maize yield 

prediction 

investigated how well 

random forests and gradient 

boosting machines forecast 

maize and Irish potato yields 

by using climate and satellite 

information. 

"Application of 

Machine Learning 

for Predicting 

Yield of Irish 

Potatoes and 

Maize" 

Xu et al. 

(2021) [49] 

Smart farming 

approach using IoT, 

cloud computing, 

and AI 

Introduced a six-domain 

smart farming model 

incorporating IoT devices, 

cloud computing, and AI, 

highlighting the benefits and 

challenges of digital 

agriculture. 

"Smart Farming 

Approach Based on 

IoT, Cloud 

Computing, and 

AI" 

Moysiadis et 

al. (2022) [50] 

Cloud computing 

for smart farming 

Developed a cloud 

computing-based web 

application using 

microservices architecture for 

real-time data collection and 

analysis, facilitating decision-

making in crop management. 

"Cloud 

Computing-Based 

Web Application 

for Smart Farming 

Using 

Microservices 

Architecture" 

Ranjan et al. 

(2022) [51] 

AI in soil and crop 

management 

Investigated AI-powered 

decision support systems for 

optimizing irrigation, 

fertilization, and pest control 

strategies in precision 

agriculture. 

"Artificial 

Intelligence in Soil 

and Crop 

Management" 

Oré et al. 

(2020) [52] 

Drone-borne 

DInSAR for crop 

growth monitoring 

investigated the application 

of Differential 

Interferometric Synthetic 

Aperture Radar (DInSAR), 

which is carried by drones, 

for high-resolution crop yield 

and health estimates. 

"Use of Drone-

Borne DInSAR for 

Crop Growth 

Monitoring" 

Gehlot et al. 

(2022) [53] 

Deep learning in 

crop production 

Conducted technical analysis 

comparing deep learning 

" Technical 

Evaluation of 
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prediction models (CNNs, LSTMs) and 

traditional machine learning 

techniques in predicting crop 

production. 

Machine Learning 

and Deep Learning 

for Crop 

Production 

Prediction 

" 

3.1. Machine Learning Algorithms In Agriculture 

1. Naïve Bayes 

The Naïve Bayes model, which is based on Bayes' theorem, is often used for classification problems 

in numerous applications. Multinomial, Bernoulli, and Gaussian algorithms are the three that make 

up Naive Bayes [54]. When it comes to classification difficulties, the Naive Bayes Algorithm is 

absolutely indispensable. The system is based on the premise that all characteristics have the same 

chance of occurring and that these chances are completely separate from one another. After another 

event has taken place, the Bayes theorem determines the probability of the third event taking place. 

Bayes theorem is utilised in multi-class classification. Furthermore, as compared to other ML 

approaches, it is both faster and easier to develop. Little data is needed for training. It works with 

both continuous and discrete data. It doesn't care about superfluous features and can scale up or 

down quite well. 

2. Decision Trees 

In supervised machine learning, decision trees, which are similar to flowcharts, are very commonly 

used for classification and prediction. A decision tree (DT) can be decomposed into a set of rules, 

where each path from the root node to a leaf node represents a different rule. In this tree structure, 

every leaf node is a class, which is achieved when an attribute satisfies the condition given by the 

previous branch. The internal nodes in this structure act as decision nodes, which can be interpreted 

as tests, conditions, or attributes used to make the classification or prediction [55]. 

 

 

3. KNN 

Classification and regression issues are both addressed by utilising a kNN-based machine learning 

approach. Algorithms in supervised ones use labelled data. There are a few of techniques to 

calculate the distances between locations, which is the basis of the procedure. Always keep in mind 

that the distance can only be positive or zero [56]. One way to achieve this is by using the absolute 

values, square root, or raising the distance to a certain power. Prior to using the kNN method, it is 

imperative that all labelled data undergo pre-processing. The first step is to standardise all of the 

data. When there are too many features, kNN stops working, hence it's necessary to do feature 

selection to remove the unimportant ones. Please complete the fields that are blank. In every other 

case, the specific record must be deleted. Adding more samples to the train set might boost 

performance. One major drawback of KNN is that computational costs and algorithmic speed both 

rise as dataset sizes get larger. 

4. Random Forests (RF) 

As an example of ensemble learning, the RF approach increases a model's efficiency by connecting 

several classifiers to tackle a difficult task. The resultant "forest" using this technique is really just a 

collection of decision trees. Random RF characteristics are chosen at each decision split [57]. The 

connection among trees is reduced by the selection of attributes that aid in prediction and increase 

efficiency. After dividing the dataset into smaller parts, the The final prediction that a Random 

Forest machine learning classification method produces is by combining the multiple decision trees. 
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It comes as a form of ensemble learning under the Bagging technique. Here, using randomly 

selected subsets of rows and features of the original dataset, decision trees are constructed, which 

can be suitable for both classification and regression tasks. Also, Random Forest enhances the 

accuracy of the model, overcomes overfitting, and it performs really well when dealing with large 

data of high dimensions. 

3.2. Advantages and challenges of ML-based yield prediction 

Advantages of Machine Learning-Based Yield Prediction [58] 

1. Improved Accuracy: ML algorithms can research a complex data set to highly accurately 

predict crop yield, including any variables, be it weather conditions, soil health, or historical. 

2. Real-time Decision Making: ML algorithms can process real-time data. This makes the farmer 

have an opportunity to take decisions based on the real-time 

information about crop and environmental health [59]. 

3. Resource Optimization: Accurate yield prediction helps optimize water, fertilizers, and 

pesticides resources in that it becomes efficient and does not waste its share of them. 

4. Risk Management: The ML models can predict variations in yield and environmental 

risks that will enable the farmer to mitigate risks such as adverse weather or pest 

outbreaks. 

5. Crop Selection and Breeding: ML can be applied in the selection of crops 

most suitable for a given region and identifying traits for selective breeding 

that improve crop performance and resilience. 

Challenges of Machine Learning-Based Yield Prediction 

1. Data Quality and Availability: In ML models, high-quality and reliable data are expected. 

Lack of correct data normally makes more errors on the wrong side of prediction, especially for 

developing countries. 

2. Data Integration and Compatibility: Weather, soil, and yield data integration from multiple 

sources might become complex and generate compatibility issues [60]. 

3. Complexity and interpretability of ML models: The complexity of deep learning models 

often inhibits their interpretability. This tends to lower the confidence level of farmers in such 

results [61]. 

4. Need for expertise: The successful deployment of ML models requires specialized knowledge 

in both data science and agriculture, which acts as a barrier for most farmers. 

5. Cost of Technology and Infrastructure: The initial investment and maintenance costs for 

ML-based yield prediction, including data collection devices and computing infrastructure, are 

likely to be too high for small-scale farmers. 

4. DATA INTEGRATION AND PRE-PROCESSING 

4.1. Fusion of Sentinel-2 and Landsat 8 imagery 

Integrating Sentinel-2 and Landsat 8 imagery combines data from both satellite systems to enhance 

the precision and reliability of remote sensing applications, especially in agriculture and 

environmental monitoring [62]. Sentinel-2, managed by the European Space Agency (ESA), offers 

high spatial resolution and frequent revisit intervals, making it well-suited for detailed vegetation 

assessments [63]. On the other hand, Landsat 8 offers NASA and the USGS with ample historical 

datasets with a moderate spatial resolution and a greater spectral range. The fusion of the datasets 

exploits both systems' advantages, thereby facilitating better crop yield forecasts, more accurate 

land use classification, and more detailed assessments of the environment. 
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The most important advantage of merging Sentinel-2 and Landsat 8 data is the increase in temporal 

resolution. Sentinel-2 revisits a location approximately every five days, while Landsat 8 returns 

every 16 days [64]. By integrating both datasets, the effective revisit frequency increases, thereby 

allowing for more consistent monitoring of crop conditions and land cover changes. This is 

particularly valuable in agriculture, where frequent observations are necessary to track vegetation 

health, soil moisture levels, and phenological variations [65]. 

Data fusion also improves spectral resolution since Sentinel-2 and Landsat 8 have different spectral 

bands. Sentinel-2 has a broader band in the visible, near-infrared (NIR), and shortwave infrared 

(SWIR) spectra, which helps in the detailed analysis of vegetation [66]. On the other hand, Landsat 

8 has thermal infrared bands that give critical information about land surface temperatures, which 

are necessary for drought stress monitoring and irrigation requirements. These datasets, combined 

together, would help the researchers derive more accurate indices like Normalized Difference 

Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Temperature (LST) 

and better crop health and resource management assessments [67]. 

Combining these datasets helps to sidestep some of the shortcomings created by cloud cover [68]. 

Because both Sentinel-2 and Landsat 8 function in the optical spectrum, such data can be obscured 

by clouds, thereby creating gaps or introducing untrustworthiness into their records [69]. 

Combining images taken from each satellite means that where clouds obscure one dataset at an 

image location for a given period, those gaps are likely to be filled by data captured by the other 

satellite, thereby increasing the probability of cloud-free observations for any given date [70]. 

An important application of Sentinel-2 and Landsat 8 fusion relates to machine learning and 

predictive modelling [71]. Information multispectral and temporal extracted from the two sources 

can improve the performance of algorithms in crop yield prediction, land cover classification, and 

precision agriculture. Training the machine learning models using both datasets enables the 

researchers to enhance the accuracy of predictions that relate to soil health, vegetation stress, and 

productivity in crops. This leads to more efficient decision-making for farmers, policymakers, and 

agricultural organizations [72]. 

Integration on such a high level has also some advantages though, but mixing Sentinel-2 and 

Landsat 8 brings along with this some challenges -dissimilar spatial resolutions, sensor's calibration, 

also the differences concerning data processing among others [73]. There is a larger spatial 

resolution, 30 m, 10–20m for the two key spectral bands in Sentinel -2 compared with Landsat. This 

means alignment would be some what different compared to the existing datasets. In some cases, 

the radiometric calibration and the techniques used in atmospheric correction would vary to allow 

for effective integration [74]. Advanced image processing techniques, such as machine learning-

based super-resolution and deep learning algorithms, are applied to harmonize the data and make it 

more usable. 

In conclusion, integration with Landsat 8 imagery adds a comprehensive approach toward 

agricultural monitoring as well as yield prediction through the Sentinel-2 [75]. Complementing 

strengths in such satellites here improve time, spectral as well as spatial resolution in a remote 

sensing application, and accordingly, result in more accurate output [76]. Even if data fusion posed 

some challenges, developing image processing technique and machine learning have further led to 

better the feasibility of employing these merged data sets more operational [77]. 

4.1.1. Data pre-processing techniques  

Data pre-processing is the process that needs to be performed before any type of analysis on 

satellite images in order to ensure that the raw data obtained from remote sensing is accurate, 

standardized, and suitable for further processing [78,79]. Pre-processing involves various 

techniques applied to correct distortion, remove unwanted noise, and standardize imagery for 

application with machine learning models or analytical assessments [80]. Atmospheric correction 
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and cloud removal are the most important pre-processing techniques used on Sentinel-2 and Landsat 

8 imagery [81]. 

4.1.2. Atmospheric Correction 

Since images of satellites captured from space pass through the Earth's atmosphere before they 

reach sensors, they introduce distortion in spectral reflectance values [82]. Such distortions arise 

due to the presence of water vapor, aerosols, dust, and other gases within the atmosphere, which 

scatter and absorb the sunlight. In the case of such interferences, remote sensing analyses are 

adversely affected; in applications like vegetation monitoring, land cover classification, and crop 

yield prediction [83]. Without atmospheric correction, the effects might distort the interpretation of 

satellite images and make it difficult to compare data collected on different dates or from different 

sources [84]. Hence, these atmospheric correction techniques are implemented to remove or 

minimize the distortions in the reflectance values so that the latter better represents the actual 

conditions of the Earth's surface. 

Dark Object Subtraction is a widely used method for atmospheric correction. The basic assumption 

here is that in certain regions of the image, like deep water bodies or shadowed areas, near-zero 

reflectance is expected in some spectral bands [85]. Reflectance values in such regions are then 

regarded as errors introduced by atmospheric scattering. This unwanted signal is subtracted from 

the entire image [86]. DOS thus helps correct the reflectance values. This way, the data can be 

trusted further. The technique is simple and computationally efficient and is applied widely in a 

number of remote sensing applications. However, this method is based on an assumption that there 

exist truly dark objects within the scene, which might not always be the case [87]. 

More advanced in terms of atmospheric correction technique is the FLAASH, Fast Line-of-sight 

Atmospheric Analysis of Spectral Hypercubes. The method, grounded on the physical process, 

makes use of radiative transfer equations that represent how light and particles within the 

atmosphere interact with one another [88]. Contrasting the DOS empirical approach, FLAASH 

incorporates the factors of altitude, humidity, and aerosol content in an image for atmospheric 

corrections, giving much better precision, particularly with hyperspectral and multispectral high-

resolution imagery. FLAASH is widely used in scientific researches and environmental monitoring 

projects, given that it gives the best highly accurate surface reflectance values. However, it has vast 

computational needs, requiring more complex data inputs in the atmosphere, and is relatively hard 

to apply [89]. 

Sen2Cor is the specialized atmospheric correction tool developed for Sentinel-2 imagery. The 

algorithm converts top-of-atmosphere (TOA) reflectance to bottom-of-atmosphere (BOA) 

reflectance, thus enhancing the spectral analysis accuracy. Since Sentinel-2 data is predominantly 

used for monitoring vegetation, agricultural assessments, and land cover mapping, Sen2Cor is the 

most important one to ensure coherence in different images. It corrects for variations in atmospheric 

conditions like changes in humidity and aerosol levels, which might otherwise affect the accuracy 

of NDVI (Normalized Difference Vegetation Index). Therefore, Sen2Cor is commonly used by the 

researchers and analysts working with Sentinel-2 data because it helps in the efficient automation of 

atmospheric corrections [90]. 

Similarly, for the Landsat 8 imagery, LaSRC has been applied for atmospheric correction. It 

corrects with physics-based corrections that are fine-tuned to be unique sensor characteristics of the 

Landsat. These contributions include the solar angle, the aerosol thickness, and the water vapor 

content. Data gathered during radically different periods would then be compared by using this code 

on the Landsat imagery. This will come in very handy for long-term environmental studies, 

monitoring deforestation, and analyzing agriculture productivity [91]. 

Atmospheric correction forms one of the fundamental preprocessing processes in remote sensing. 

This is because atmospheric correction allows for reliable and consistent analyses of images. It 
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becomes imperative, especially at the integration point of data gathered from various platforms, 

such as Sentinel-2 and Landsat 8.Because these satellites have different sensor characteristics and 

revisit frequencies, atmospheric correction standardizes the reflectance values of the data, thus 

making it easy to fuse and compare the data. Whether using simple empirical methods as DOS or 

advanced physics-based algorithms like FLAASH, Sen2Cor, and LaSRC, atmospheric correction 

remains an essential procedure for ensuring high-quality satellite data for various applications in 

agriculture, forestry, and environmental monitoring. 

Cloud Removal 

The major challenge in optical satellite remote sensing is cloud cover, which covers the land surface 

and limits the ability to analyze images. Since optical sensors depend on visible and infrared light to 

capture surface features, the presence of clouds and their shadows can result in missing or distorted 

data. This is the most challenging aspect in agricultural monitoring, forest management, and land 

classification, where the imagery should be clear to accurately assess the issues. Several techniques 

have been designed to remove the clouds from imagery so that an area covered with clouds can be 

detected, masked, or even replaced to yield reliable data to be further processed [92]. 

The most common process used for cloud removal is called cloud masking. It identifies the pixels 

covered by clouds and removes those pixels from the dataset. There are many algorithms that have 

been successfully developed over time, including Fmask (Function of Mask) and MAJA (MACCS-

ATCOR Joint Algorithm) [93]. These methods use spectral characteristics and thermal bands to 

distinguish clouds from the land and water surfaces. With reflectance values in certain wavelengths, 

including SWIR and TIR, these algorithms are able to accurately identify clouds and their shadows. 

Once masked, cloud-covered pixels do not pollute subsequent analyses of images. It has 

applications in high-precision remote sensing data where the requirement could be something like 

crop health assessment and environmental monitoring. 

The second method of cloud removal is temporal compositing. In this, a composite image with 

minimum cloud cover is generated instead of using an individual image. Since satellite sensors 

return to the same location several times, cloud-free pixels in one image can be replaced by cloud-

affected pixels in another image [94]. This technique is widely applied in vegetation monitoring and 

land cover mapping, where seasonal variations in surface conditions need to be analyzed over time. 

Temporal compositing helps construct a more complete and accurate representation of the land 

surface by selecting the clearest pixels from a series of images. 

Beyond improving the cloud removal process, the data fusion techniques merge images coming 

from various satellite resources. For example, the revisit time and spectral characteristics are 

different for Sentinel-2 and Landsat 8, and thus each becomes a complementary source for cloud-

free data. Pixels in the image coming from another satellite resource can fill gaps and complement 

the cloud-filled area in the other dataset. This cross-sensor approach improves data availability and 

ensures a more holistic spatial and temporal coverage. Data fusion is the most useful in applications 

that require constant monitoring such as precision agriculture, land use change detection, and 

disaster responses. 

Advances in AI, such as improved machine learning, have thus enabled improved methods of cloud 

removal. This now includes reconstruction of covered areas with deep learning models using CNNs 

[95]. These models are trained on large datasets of cloud-free imagery and learn to predict surface 

features that are missing in spatial patterns. Machine learning-based approaches can generate 

realistic representations of cloud-obscured regions by analyzing surrounding pixels and historical 

data [96 - 98]. This technique is promising for high-resolution remote sensing applications, where 

even small cloud-covered areas can significantly impact the accuracy of analysis . 

Preprocessing steps in remote sensing include atmospheric correction and cloud removal as a way 

to ensure that satellite imagery is as accurate and reliable as possible [99]. Providing multispectral 
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and hyperspectral image quality is enhanced by these preprocessing methods through the 

minimization of distortion attributable to the atmosphere and cloud cover, which will significantly 

help in better decision-making terms in agricultural management, environmental monitoring, and 

land classification [100]. The further development of satellite-based remote sensing for various 

applications will be more effective by the integration of traditional methods with advanced machine 

learning and data fusion approaches as technology continues to evolve. 

5. CONCLUSION  

The integration of Sentinel-2 and Landsat 8 imagery with machine learning algorithms significantly 

enhances crop yield predictions and agriculture monitoring based on the complementarity of both 

satellite systems. The high spatial resolution and high temporal capability of Sentinel-2 complement 

long-term historical data and thermal imaging capability from Landsat 8, thus allowing a more 

holistic approach toward agricultural assessment. This integration makes possible the establishment 

of exact indices about vegetation; the monitoring in real time of the health of the soil; and the 

prediction of crop yield, upon which it is possible for farmers, agronomists, and policymakers to 

make data-driven decisions. Remote sensing applications evolved from simple land cover mapping 

to advanced precision agriculture, optimizing resource use, mitigating risks, and improving farm 

productivity in general. This further improves these capabilities through processing huge datasets on 

weather patterns, soil properties, and crop growth, thus leading to smarter and more adaptive 

agricultural practices. Challenges still abound in the form of data quality, model interpretability, and 

high costs of implementation, which have so far restricted the full-scale adoption of these 

technologies, especially for small-scale farmers. Effective data pre-processing techniques like 

atmospheric correction and cloud removal are a critical step for making satellite images reliable. 

Accuracy of satellite observations has been further enhanced by various DOS, FLAASH, and 

Sen2Cor methods in cloud masking and data fusion to be used in crop monitoring applications. 

Continued development in artificial intelligence and deep learning continues to take agricultural 

analytics into uncharted territories, that is, making remote sensing more accurate and efficient. 

Indeed, these make the resultant transformation of satellite technology and AI-driven analytics a 

potent opportunity for the promotion of sustainable farming practices, enhancing food security, and 

mitigating agriculture-related climate risks- an eventual case toward the widespread global adoption 

of these transformative technologies. 
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