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Abstract:  
Modern smart grids have transformed energy management by include the Internet of Things (IoT), 

therefore enabling real-time communication and data-informed decision-making. Important for 

improving energy efficiency and preserving grid stability is a smart communication system presented in 

this work intended to improve load forecasting for smart meters.  Using IoT technology to gather data 

and sophisticated predictive analytics to enhance load forecasting across several time periods—short-

term (one hour to one week), medium-term (spanning one week to one month), and long-term 

(extending from one month to several years)—the proposed system. By means of accurate forecasts 

spanning several years, utility companies may maximize their resources, lower running expenses, and 

improve grid dependability.  This research investigates how big data analytics and machine learning 

techniques might help to create adaptable, real-time strategies and enhance forecasting accuracy.  This 

strategy helps the smart grid to minimize energy waste, better balance supply and demand, and assist 

projects for sustainable energy. 
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1. Introduction 

The Internet of Things (IoT) is a fast-growing technology that links devices via the Internet, allowing 

for smooth data sharing among people, devices, and systems. Every device has its own unique 

identifier, making it easier to collect, share, and analyze data effectively [1]. 

Cisco reports that the global count of connected devices grew from 8.7 billion in December 2012 to 

more than 12.3 billion by May 2014. Currently, there are around 26.66 billion IoT devices being used, 

covering a range of applications like smart energy meters, wearable tech, and home automation 

systems. Cisco believes that the Internet of Everything has the potential to create as much as $14.4 

trillion in economic value for businesses in the private sector around the world in the coming decade 

[2]. 
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The Internet of Things has made its presence felt across various sectors, including healthcare, smart 

homes, manufacturing, agriculture, and transportation. The energy sector depends on IoT as an essential 

technology for developing smart grids [3]. Figure 1 depicts examples of IoT services that comprise 

AMI systems, smart manufacturing facilities, and medical services. 
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Figure 1. Examples of IoT services 

 

Growing demand for electricity as we enter the twenty-first century is turning conventional power 

systems into more sophisticated and responsive ones known as smart grids.  A smart grid is described 

by the National Institute of Standards and Technology (NIST) as a modern system that combines 

innovative information and communication technologies (ICT) with conventional power infrastructure 

to improve efficiency, dependability, and sustainability. 

 Figure 2 shows how among the most important applications of the Internet of Things the smart grid 

is about to become.  Beginning with power generation and working all the way to end users—that is, 

homes, businesses, and industries—it covers the whole energy supply chain.  Smart components and 

two-way communication capability of transmission and distribution networks help to enable real-time 

monitoring and control. 

 

Smart Grid 

Components 

 

Figure 2. Primary components of the Smart Grid. 
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Smart homes will combine intelligent appliances and advanced metering infrastructure (AMI) to 

offer a more linked living experience. Sensors and actuators will be used in networks of power 

generation, transmission, and distribution to improve their more efficient operation. Using a network 

of linked smart devices including meters, sensors, and actuators, the smart grid mostly seeks to balance 

energy supply and demand in real-time.  

Smart homes are fundamentally based on smart meters (SM), Internet of Things devices connected 

to household appliances that use two-way communication channels to gather data. Tracking 

consumption of electricity in homes, companies, and factories depends on smart meters. They help to 

reduce non-technical losses, raise the caliber of service, increase outage detection, and provide accurate 

fault localization. They also enable users to start noticing their consumption patterns [4], [5]. 

Artificial intelligence and machine learning make use of smart meter valuable time series data to 

improve energy management. Predicting future consumption of electricity is the main goal of load 

forecasting, which is There are three distinct types:  

1. Short-term load forecasting (STLF) helps us anticipate energy consumption from one hour to 

one week in advance. 

2. Medium-term load forecasting (MTLF) involves making predictions for a timeframe ranging 

from one week to one month. 

3. Long-term load forecasting (LTLF) involves predicting demand over a timeframe that can 

range from one month to several years. 

Paper Organization 

The key components of this research—smart meters, load forecasting, time series forecasting, 

demand-side management (DSM)—are underlined in Section 2.  It describes how smart meters are 

constructed, investigates strategies to forecast future demand using past data, and emphasises 

significant actions in foreseeing power consumption.  This entails data preparation, time series breaking 

down, model selection, prediction generation, result evaluation.  We explore the realm of short-term 

electrical load forecasting in Section 3 using Random Forests (RF), Support Vector Regression (SVR), 

and Extreme Gradient Boosting (XGBoost).  In Section 4 we investigate the preprocessing techniques 

supporting various algorithms and their structural framework.  We report our results and have 

discussions in Section 5; then, in Section 6, we wrap up the work with our conclusions. 

Smart Meters 

Set up on the customer's side, smart meters are linked devices that are absolutely vital in smart grids. 

Smart meters stand out from traditional ones by gathering real-time voltage and current data from 

customers every day. They use two-way communication channels, connecting the smart meter with 

intelligent devices in smart homes and also linking the smart meter to the data concentrator (DC). The 

gathered information is then sent to the meter data management system (MDMs) for combining and 

examining [6], [7], [8]. 

Figure 3 illustrates the essential information flow within the framework of an electricity grid, 

particularly concerning an electricity distribution company. At the substation level, metering plays an 

essential role in gathering important information about energy inputs and interactions with other power 

networks and the transmission system. The data we gather mainly comes from metering systems used 

in industrial, commercial, and residential settings.  

 

 

 

 

 

http://www.multijournals.org/


14 | INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY www.multijournals.org  

 

 

The AMI subsystem plays a crucial role in overseeing and managing the flow of data, allowing for 

real-time insights into the electricity profile of the grid. It connects with all metering subsystems via a 

robust communication network. In the field, we use various communication technologies such as power 

line communication (PLC), radio communication (GSM, GPRS, UMTS), DSL, and broadband 

connections via Ethernet or fiber optic networks. 

Smart meters bring a range of benefits compared to traditional meters. Some of the main features 

they offer are energy billing, cutting down on electricity use, providing consumption curves for both 

customers and utilities, detecting outages, monitoring power quality (including harmonics and 

classifying voltage disturbances), identifying fraud and theft, enabling automated remote control, and 

allowing for remote management of appliances. 

Smart meters send out data at regular intervals, usually every hour or according to specific settings, 

and this is known as time series data. A time series is a collection of data points arranged in the order 

they occurred, with time typically serving as the independent variable. When we look at time series 

data, our main goal is often to create reliable predictions for what trends might come next. When 

working with time series data, it's important to keep in mind a few key aspects. You need to consider 

if the data is stationary, whether there are any seasonal patterns, and if the target variable shows 

autocorrelation [9]. 

Stationarity is an essential feature of time series data. A time series is seen as stationary when its 

statistical characteristics, like mean and variance, stay the same over time, and its covariance does not 

depend on time. The Dickey-Fuller statistical test is often utilized to determine if a time series exhibits 

stationarity. For accurate modeling, it's best to work with a stationary time series. However, because 

not all time series naturally exhibit stationarity, different transformations might be necessary to reach 

that state. 

Seasonality involves the familiar rhythms and cycles that appear consistently over time in a data 

series. For example, people generally use less electricity at night than during the day, showing a clear 

daily pattern in usage. People tend to use the most energy in the late afternoon, while the quietest times 

are usually at the beginning and end of the day. Autocorrelation is about how similar observations are 

to each other based on the time that separates them. 

Gathering and examining data from smart meters in the IoT ecosystem gives decision-makers the 

chance to predict electricity usage with precision. Moreover, analyzing smart meter data can help us 

anticipate demand, allowing us to prevent crises and reach our goals with tailored pricing strategies. As 

a result, it's important for public agencies, private companies, and other involved parties to have the 

ability to handle large amounts of data and use advanced analytical tools to turn raw information into 

useful insights. 
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Figure 3. Essential information flow within the framework of an electricity grid. 

 

Load Forecasting 

Load forecasting, which involves predicting how much power will be used, can be divided into three 

main types: short-term load forecasting (STLF), medium-term load forecasting (MTLF), and long-term 

load forecasting (LTLF). STLF looks at predictions that cover the next hour to a week, MTLF takes a 

broader view with forecasts from a week to a month, and LTLF extends its reach with projections that 

can stretch from one month to several years. Among these, electrical short-term load forecasting plays 

a crucial role in maintaining the reliable and efficient functioning of power systems. It is essential for 

planning, scheduling, load flow analysis, managing contingencies, and maintaining the system [10], 

[11]. 

Time Series Forecasting Steps 

Time series forecasting comprises crucial phases meant to enable us to project future values by means 

of historical data.  We first define the problem by stating our predictions' goal and the time horizon.  We 

compile the data and polish it to handle any scaling difficulties, outliers, and missing values.  We begin 

building lags and moving averages once we delve into the data to find trends and seasonal patterns.  We 

next select a suitable model, train it, and evaluate its performance across several criteria.  Following 

validation, the model creates well calibrated forecasts that are implemented for continuous observation 

to guarantee their accuracy over time.  The following clarifies the basic processes of time series 

forecasting [12]: 

 

2. Materials and Methods 

Data Cleansing 

Frequently known as data cleansing, scrubbing, or rectification, this process finds and corrects any 

erroneous, duplicate, incomplete, or inaccurate data in a dataset.  This procedure comprises of spotting 

errors and fixing them by means of data modification, updating, or deletion.  Data cleansing helps to 

improve the quality of datasets by means of more accurate, dependable, and consistent information, so 

enabling organizations to make wise and successful decisions. Usually, four typical kinds of problems 

that might be targeted on during the data cleansing process: 
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1. Data cleansing helps to correct many kinds of mistakes in datasets, including spelling errors, 

typos, incorrect numbers, syntax problems, and missing information.  Fixing any empty or null 

fields meant for data helps to guarantee the consistency and accuracy of the dataset. 

2. Inconsistent Data: Names, addresses, and other specifics routinely show up in different forms 

on many systems.  For example, in one dataset you might find a customer's middle initial; in 

another, it could be absent, or the terms and IDs might vary.  Data cleansing simplifies 

information analysis and helps to preserve consistency in datasets, so enabling reliable insights. 

3. Data cleansing methods seek and correct duplicate records in datasets using either merging or 

removal approaches.  For instance, we can handle duplicate entries to create a single, whole 

record when aggregating data from two separate systems. 

4. Unrelevant Information:  Certain data points—such as outliers or outdated entries—may not 

really matter in the data analysis process and might skew the outcomes.  Data cleansing helps 

to remove extraneous data from datasets, so optimising the data preparation process and 

reducing the need of processing and storage capacity required. 

Time series decomposition 

Which is a useful method for comprehending and evaluating time series data since it separates a time 

series into its component elements.  This method clarifies the several difficulties in time series analysis 

and forecasting so enabling more significant insights and interpretations. 

Modelling 

Particularly when dealing with large historical datasets, selecting the appropriate model for a given 

problem is crucial.  In these contexts, we frequently resort to deep learning methods comprising: 

1. Designed to learn from sequences of data and effectively grasp long-term relationships, long 

short-term memory (LSTM) networks 

2. Though they have a simpler architecture than LSTMs, Gated Recurrent Unit (GRU) networks 

help to efficiently manage sequential data. 

3. A type of feedforward neural network capable of capturing complex data relationships is the 

multilayer perceptron (MLP). 

These algorithms perform in time series forecasting and predict with different designs that help to 

increase their accuracy.  When data is few, you could want to look at applying machine learning 

techniques including Prophet and Support Vector Regression (SVR).  Conversely, you could apply auto-

regressive moving average (ARMA) and auto-regressive integrated moving average (ARIMA). 

1. Forecasting 

Among all the actions described here, the simplest one is the actual forecasting one.  Usually, all you 

have to do is indicate how many time steps you wish to forecast and call the forecast() or predict() 

function of the model.  This easy-to-use approach allows one to rapidly and with accuracy create 

forecasts using the trained model. 

2. Evaluation 

Establishing evaluation metrics helps one to grasp the performance of a statistical or machine-

learning model.  The following are the main benchmarks usually applied to evaluate the selected model 

: 

a. Mean Square Error (MSE): By averaging the squared deviations, the mean square error (MSE) 

examines how far off the forecasts are from the real values. 

𝑀𝑆𝐸 = (
1

𝑛
)∑ 𝑖=1

𝑁
  (𝑦𝑖 − 𝑦̂𝑖)

2  (1) 
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b. Root Mean Square Error (RMSE): By computing the square root of the average of the squared 

deviations, Root Mean Square Error (RMSE) gauges how much the expected values differ 

from the actual values. 

𝑅𝑀𝑆𝐸 = √(
1

𝑛
)∑  𝑁

𝑖=1   (𝑦𝑖 − 𝑦̂𝑖)2  (2) 

c. Mean Absolute Percentage Error (MAPE): Expressing the forecast as a percentage, the mean 

absolute percentage error (MAPE) indicates its degree of accuracy.  It gauges the average 

absolute percentage error between actual values and projected values. 

𝑀𝐴𝑃𝐸 = (
1

𝑛
)∑  𝑁

𝑡=1
|(𝑦̂𝑡−𝑦𝑡)|

𝑦𝑡
× 100 (3) 

These measures provide significant understanding of the model's performance, enabling comparisons 

between several datasets and so support continuous improvement. 

 

3. Results  

Demand Side Management (DSM) 

On the consumer side, controlling electricity usage calls for a deliberate attitude to our energy 

consumption.  It seeks to lower peak demand, increase energy efficiency, and help to support grid 

stability.  Along with the total consumption, DSM comprises several technologies, policies, and 

initiatives meant to influence how and when consumers use energy [13].  Aimed at promoting more 

efficient energy use and so helping to maintain the stability of the electrical grid, some strategies that 

might be used are load shedding, load shifting, energy-saving initiatives, and demand response programs 

[14], [15]. 

 By helping utilities and grid operators strike a better mix between supply and demand, DSM reduces 

the need for costly peaking power plants.  DSM also influences how consumers use electricity, which 

helps to significantly lower utility costs and lessens environmental impact.  DSM is indispensable in 

promoting a more sustainable and efficient energy system by lowering the demand for expensive new 

power generating plants and transmission infrastructure. 

 DSM programs rely on consumers meaningfully participating.  By providing educational campaigns, 

real-time energy consumption data, smart metering, and simple-to-use interfaces allowing consumers to 

keep track of and manage their electricity use, utilities and grid operators enable people to get involved. 

When utilities share important information and offer incentives for energy conservation, they create a 

partnership with consumers that strengthens the impact of demand-side management strategies and 

encourages sustainable energy behaviors. 

STLF and DSM 

As mentioned earlier, there are several techniques that can be used to predict data for up to a week in 

STLF. The expected values will be used to analyze and pinpoint peak demand times, allowing us to 

develop strategies for effectively distributing loads throughout the day and reducing the necessity for 

load-shedding operations. It's essential to understand that load-shedding procedures play a crucial role 

in the DSM process. 

DSM Programs 

DSM programs are thoughtful strategies aimed at managing the load profile in a way that aligns with 

utility goals. Our goals focus on keeping the power factor near 1.0 and making sure that peak load stays 

within the system's capacity. By reaching these goals, utilities can enhance the energy production from 

their installed units, which in turn boosts overall profit while reducing the average cost per kWh [16]. 
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Some common methods used to reach this goal are load shaping, peak clipping, valley filling, load 

shifting, strategic conservation, strategic load growth, and flexible load shaping, as shown in Figure 4.  

1. Electrical Peak Clipping: This process involves managing the peak amplitude of an electrical 

signal by reducing or removing the parts of the signal that go beyond a certain threshold. 

2. Electrical Load Shifting: This means changing when we use electricity, moving our usage from 

busy times to quieter times. The main goal is to make the most of our electrical infrastructure 

and ease the pressure on the grid when demand is high. 

3. Electrical Strategic Growth: Emphasizes creating and executing plans that help organizations 

take advantage of opportunities, tackle challenges, and attain lasting growth in the electrical 

industry. 

4. Electrical Valley Filling: Used to help reduce voltage fluctuations or dips in the electrical grid. 

Voltage sags, commonly known as voltage dips or brownouts, are brief drops in voltage levels 

that can happen due to a range of reasons, such as faults, sudden shifts in load, or the activation 

of large motors. Utilities can improve voltage stability and boost the reliability of the electrical 

supply by using valley filling strategies. 

5. Electrical Strategic Conservation: Aims to reduce energy waste, enhance efficiency, and 

encourage sustainable practices. It requires a deep grasp of how energy is used, the adoption of 

smart technologies, and a dedication to continuous enhancement and creativity in managing 

energy. 

6. Electrical Flexible Load Shaping: This process entails modifying or shifting electricity usage to 

assist in maintaining balance within the power grid. The pattern of a flexible load can vary due 

to several influences, such as the time of day, the day of the week, the season, and the general 

state of the grid. By using flexible load shaping, utilities can improve grid stability and make 

energy distribution more efficient. 
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Figure 4. Common methods DSM 

 

Employed Algorithms and Techniques in Load Forecasting 

 Dealing with various problems in power systems depends on knowing temporary electrical loads.  

Many forecasting systems try to hourly estimate electrical loads.  STLF has been addressed with a range 

of methods and algorithms.  Many studies use time series data and apply Vector Auto Regression (VAR), 

ARMA, and ARIMA among other statistical techniques.  Some research use machine learning 

techniques including Extreme Gradient Boosting (XGBoost), Support Vector Regression (SVR), and 

Random Forests (RF).  Deep learning techniques including Temporal Convolutional Networks (TCN), 

Feed Forward Neural Networks (FFNN), Back Propagation Neural Networks (BPNN), Recurrent Neural 

Network (RNN), Long Short-Term Memory (LSTM), and Convolutional Neural Network (CNN) [17, 

18] are also used in further study. 

 Furthermore, some studies have tackled this problem combining several approaches.  With some 

using machine learning methods and others investigating advanced deep learning models, many 

researchers have greatly changed the discipline of load forecasting. 
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Application of Selected Algorithms and Techniques 

Two sections comprise this: the part on Models' Architecture, in which we investigate the several 

architectures of algorithms and techniques applied in STLF; and the part on Data Cleaning, which 

clarifies the approaches of dataset processing and management. 

Design of Models 

LSTM Model 

 Designed to solve the vanishing gradient issue, Long Short-Term Memory (LSTM) is a specialised 

kind of recurrent neural network (RNN) that can thus capture long-term dependencies in sequential data.  

LSTMs, unlike conventional RNNs, use three gates—input, forget, and output—to control memory cells 

under three gates:  These gates control information flow so the network may discard pointless details 

and keep pertinent data.  Because LSTMs can efficiently handle sequential data, they are increasingly 

applied in applications including time series forecasting, speech recognition, and machine translation.  

Through data analysis in both forward and reverse directions, bidirectional LSTMs improve 

performance even more.  For challenging jobs like video analysis [19], LSTMs can also be coupled with 

CNNs, see Figure 5. 

 Though they use more computational resources, LSTMs outperform conventional RNNs in learning 

long-term dependencies.  By combining some gates, variants like Gated Recurrent Units (GRUs) 

simplify the architecture and provide a faster alternative with like performance.  LSTMs find common 

use in recommender systems, anomaly detection, and language modelling.  Training LSTMs can be 

difficult given their complexity even with their benefits.  To improve performance, researchers have put 

out ideas including stacked LSTMs and peephole connections.  LSTMs specialise in temporal 

sequences, hence they are more important in deep learning applications including time-dependent 

patterns than CNNs, which shine in spatial data, see Figure 6. 

 

 

Figure 5. Traditional RNN 
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Figure 6. LSTM Model 

 XGBoost   

Designed to operate in parallel for optimal performance, XGBoost is a simplified and effective 

variation on the gradient boosting technique.  By parallelising the whole boosting process, XGBoost 

drastically reduces training time—as shown in Figure 7. This method can be used as a valuable tool for 

selecting features and predicting loads over specific time periods [20]. XGBoost has proven itself in a 

variety of classification and prediction tasks, showcasing its effectiveness and reliability. 

 

Figure 7. XGBoost Model 
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Gated Recurrent Unit (GRU) Networks 

The GRU is commonly utilized in Deep Learning, especially for tasks involving sequence 

prediction. This type of RNN is particularly good at understanding long-term relationships in sequences 

of data. The GRU stands out from other RNN architectures because it features just two gates: the reset 

gate and the update gate [21]. Interestingly, it doesn't have a distinct cell state and instead uses the 

hidden state to carry information through different time steps, as shown in Figure 8. 

The following equations can be used in controlling the gating mechanism in GRU cells. During the 

training process, the weight matrices are learned by an optimization algorithm. 

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡])  (7) 

𝛾𝑡 = 𝜎(𝑊𝛾 ⋅ [ℎ𝑡−1, 𝑥𝑡])  (8) 

ℎ𝑡
∼ = tanh⁡(𝑊 ⋅ [𝛾𝑡 × ℎ𝑡−1, 𝑥𝑡]) (9) 

ℎ𝑡 = (1 − 𝑧𝑡) × ℎ𝑡−1 + 𝑧𝑡 × ℎ𝑡
∼ (10) 

 

 

Figure 8. GRU 

 

Cleaning Up Data 

This experiment makes use of AEP dataset, which you can find publicly available on Kaggle. This 

dataset offers a detailed look at hourly power consumption, with each entry capturing the date, time, 

and meter reading. It spans from January 2006 to August 2018, showcasing the country's energy usage 

over time.  

We started by taking a close look at the dataset, performing an initial review and some exploratory 

data analysis to understand its quality. This is important because some forecasting methods depend 

directly on the time series data, while others rely on key features that are derived from it. Using the 

auto-correlation function (ACF) allows us to check if the time series is stationary, which can improve 

the forecasting accuracy of traditional machine learning methods such as ARIMA. Figure 9 shows how 

the dataset is spread out. 

 Figure 10 illustrates the relative significance of the dataset's extracted features.  From the date time 

column in the dataset, we gather features including the hour, day of the week, day of the month, day of 

the year, month, and quarter. 
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 Using the robust scaler tool helped us to normalise the dataset for every model.  Average the energy 

values helped us to handle duplicate entries with the same date and time.  We properly managed the 

outliers using a capping process.  We filled in any gaps where data might be absent using linear 

interpolation to ensure our dataset is whole and every hour of the day is recorded. 

 Using the interquartile range (IQR) and training data median, we standardised the test data.  This 

method enables us to evaluate the model's performance on data it has not come across before and more 

fairly depict real-world events.  Normalising data depends on this approach since it guarantees that the 

model is assessed in real-world situations.  Figure 11 presents the division of the test and training data. 

 

 

Figure 9. AEP dataset 
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Figure 10. Features extracted from the dataset 

 

 

Figure 11. Training and test data 

 
Applying XGBoost Model 

We examine in Figure 12 how the projected values of the XGBoost model match the actual ones.  This 

comparison considers significant hyperparameters including the maximum tree depth, set at 4, and the number 

of estimators, set at 1000.  Three error measures assess the model's performance on the test set. The Root Mean 

Squared Error (RMSE) is 13,780,445, indicating the average magnitude of prediction errors in the same units as 

the target variable. The Mean Absolute Error (MAE) is 2,848.89, representing the average absolute difference 

between actual and predicted values. The Mean Absolute Percentage Error (MAPE) is 8.9%, showing the relative 

error as a percentage of the actual values. These metrics provide a comprehensive assessment of the model's 

accuracy. This suggests that the XGBoost model doesn't fit the data very well and isn't a good match for the case 

study.  
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Figure 12. XGboost results 

 

 

 

 

 

 

 

 

 

http://www.multijournals.org/


26 | INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY www.multijournals.org  

 

 

LSTM 

Table 1 shows the parameters of the tested LSTM. The results have been shown in Figure 13. One can note that the 

LSTM accuracy is higher than that of the XGboost. 

Table. 1 LSTM parameters 

Layer (type) Output Shape Param # 

lstm (LSTM) (None, 5, 64) 18,688 

dropout (Dropout) (None, 5, 64) 0 

lstm_1 (LSTM) (None, 32) 12,416 

dropout_1 (Dropout) (None, 32) 0 

dense (Dense) (None, 16) 528 

dense_1 (Dense) (None, 1) 17 
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Figure 13. LSTM results 

GRU 

GRU model has been also applied. The parameters of the GRU have been listed in table. 2. Moreover, the results 

have been shown in Figure 14.  

Table 2. GRU parameters. 

Layer (type) Output Shape Param # 

gru (GRU) (None, 5, 64) 14,208 

dropout_2 (Dropout) (None, 5, 64) 0 

gru_1 (GRU) (None, 32) 9,408 

dropout_3 (Dropout) (None, 32) 0 

dense_2 (Dense) (None, 16) 528 

dense_3 (Dense) (None, 1) 17 
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Figure 14. GRU results 

 

4. Discussion 

GRU via LSTM Models Comparison 

The comparison between GRU and LSTM on the test dataset shows that GRU outperforms LSTM across all 

key performance metrics. The lower MSE (0.000603 vs. 0.000803) and MAE (0.016245 vs. 0.019818) indicate that 

GRU produces more accurate predictions with smaller errors. Additionally, the higher R² value (0.972825 vs. 

0.963804) suggests that GRU explains more variance in the data, making it a more reliable model for this task. 

Given these results, GRU appears to be the better choice if computation time and complexity are similar. Further 

analysis, such as statistical significance testing or training time comparison, could provide additional insights 

into their relative advantages. The results of the comparison has been listed in table 3. 
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Table 3. Model Comparison for GRU via LSTM 

Model Set MSE MAE R^2 

Model 1 (GRU) Test 0.000603 0.016245 0.972825 

Model 2 (LSTM) Test 0.000803 0.019818 0.963804 

 

5. Conclusion 

Electricity is a crucial part of our everyday lives, powering everything from lights and heating to 

cooling systems and the many devices we use at home, work, in industries, healthcare settings, and 

entertainment spots. Ensuring that we have access to electrical energy and encouraging its efficient use 

is essential for fostering sustainable development and protecting our environment. This paper shows 

how deep learning techniques can effectively enhance the accuracy of short-term electrical load 

forecasting. A crucial element in enhancing forecast accuracy is the thorough examination and 

understanding of electrical load time series data. Recognizing these patterns and tackling possible 

shortages is crucial for successfully using deep learning to achieve acceptable results. The integration 

of deep learning into STLF enhances decision-making in DSM. By leveraging forecasted data, DSM 

strategies such as load shifting, load clipping, and valley filling can be implemented, potentially 

reducing the need for load-shedding and preventing service interruptions. This approach not only 

provides electricity providers with clearer insights for strategy development but also encourages 

consumer participation by promoting changes in electricity usage patterns. 
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