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Abstract:

Modern smart grids have transformed energy management by include the Internet of Things (IoT),
therefore enabling real-time communication and data-informed decision-making. Important for
improving energy efficiency and preserving grid stability is a smart communication system presented in
this work intended to improve load forecasting for smart meters. Using [oT technology to gather data
and sophisticated predictive analytics to enhance load forecasting across several time periods—short-
term (one hour to one week), medium-term (spanning one week to one month), and long-term
(extending from one month to several years)—the proposed system. By means of accurate forecasts
spanning several years, utility companies may maximize their resources, lower running expenses, and
improve grid dependability. This research investigates how big data analytics and machine learning
techniques might help to create adaptable, real-time strategies and enhance forecasting accuracy. This
strategy helps the smart grid to minimize energy waste, better balance supply and demand, and assist
projects for sustainable energy.
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1. Introduction
The Internet of Things (10T) is a fast-growing technology that links devices via the Internet, allowing

for smooth data sharing among people, devices, and systems. Every device has its own unique
identifier, making it easier to collect, share, and analyze data effectively [1].

Cisco reports that the global count of connected devices grew from 8.7 billion in December 2012 to
more than 12.3 billion by May 2014. Currently, there are around 26.66 billion IoT devices being used,
covering a range of applications like smart energy meters, wearable tech, and home automation
systems. Cisco believes that the Internet of Everything has the potential to create as much as $14.4
trillion in economic value for businesses in the private sector around the world in the coming decade

[2].
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The Internet of Things has made its presence felt across various sectors, including healthcare, smart
homes, manufacturing, agriculture, and transportation. The energy sector depends on IoT as an essential
technology for developing smart grids [3]. Figure 1 depicts examples of IoT services that comprise
AMI systems, smart manufacturing facilities, and medical services.

4 ) Advanced metering 4 )

infrastructure (AMI)
including smart cities, which
composed of smart SM, DC,

\_ N y, and IEDs \_ )

loT healthcare
including the digital
communication of Medical

Smart surveillance
Used for face recognition

(- ) (- )

Smart vehicles . Smart factories
Autonomous vehicles & ot e ineslich) Operation & Equipment

condition-based maintenance SRRLERtonS optimization
\_ J ¥ \_ J
4 4 )
loT shoboin Human Wireless sensors
bpIng Health and Fitness wearable Various purposes, such as
By automated checkouts : :
devices measuring temperature
. J . J

Figure 1. Examples of IoT services

Growing demand for electricity as we enter the twenty-first century is turning conventional power
systems into more sophisticated and responsive ones known as smart grids. A smart grid is described
by the National Institute of Standards and Technology (NIST) as a modern system that combines
innovative information and communication technologies (ICT) with conventional power infrastructure
to improve efficiency, dependability, and sustainability.

Figure 2 shows how among the most important applications of the Internet of Things the smart grid
is about to become. Beginning with power generation and working all the way to end users—that is,
homes, businesses, and industries—it covers the whole energy supply chain. Smart components and
two-way communication capability of transmission and distribution networks help to enable real-time
monitoring and control.

Smart Homes

Figure 2. Primary components of the Smart Grid.
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Smart homes will combine intelligent appliances and advanced metering infrastructure (AMI) to
offer a more linked living experience. Sensors and actuators will be used in networks of power
generation, transmission, and distribution to improve their more efficient operation. Using a network
of linked smart devices including meters, sensors, and actuators, the smart grid mostly seeks to balance
energy supply and demand in real-time.

Smart homes are fundamentally based on smart meters (SM), Internet of Things devices connected
to household appliances that use two-way communication channels to gather data. Tracking
consumption of electricity in homes, companies, and factories depends on smart meters. They help to
reduce non-technical losses, raise the caliber of service, increase outage detection, and provide accurate
fault localization. They also enable users to start noticing their consumption patterns [4], [5].

Artificial intelligence and machine learning make use of smart meter valuable time series data to
improve energy management. Predicting future consumption of electricity is the main goal of load
forecasting, which is There are three distinct types:

1. Short-term load forecasting (STLF) helps us anticipate energy consumption from one hour to
one week in advance.
2. Medium-term load forecasting (MTLF) involves making predictions for a timeframe ranging
from one week to one month.
3. Long-term load forecasting (LTLF) involves predicting demand over a timeframe that can
range from one month to several years.
Paper Organization

The key components of this research—smart meters, load forecasting, time series forecasting,
demand-side management (DSM)—are underlined in Section 2. It describes how smart meters are
constructed, investigates strategies to forecast future demand using past data, and emphasises
significant actions in foreseeing power consumption. This entails data preparation, time series breaking
down, model selection, prediction generation, result evaluation. We explore the realm of short-term
electrical load forecasting in Section 3 using Random Forests (RF), Support Vector Regression (SVR),
and Extreme Gradient Boosting (XGBoost). In Section 4 we investigate the preprocessing techniques
supporting various algorithms and their structural framework. We report our results and have
discussions in Section 5; then, in Section 6, we wrap up the work with our conclusions.

Smart Meters

Set up on the customer's side, smart meters are linked devices that are absolutely vital in smart grids.
Smart meters stand out from traditional ones by gathering real-time voltage and current data from
customers every day. They use two-way communication channels, connecting the smart meter with
intelligent devices in smart homes and also linking the smart meter to the data concentrator (DC). The
gathered information is then sent to the meter data management system (MDMs) for combining and
examining [6], [7], [8].

Figure 3 illustrates the essential information flow within the framework of an electricity grid,
particularly concerning an electricity distribution company. At the substation level, metering plays an
essential role in gathering important information about energy inputs and interactions with other power
networks and the transmission system. The data we gather mainly comes from metering systems used
in industrial, commercial, and residential settings.
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The AMI subsystem plays a crucial role in overseeing and managing the flow of data, allowing for
real-time insights into the electricity profile of the grid. It connects with all metering subsystems via a
robust communication network. In the field, we use various communication technologies such as power
line communication (PLC), radio communication (GSM, GPRS, UMTS), DSL, and broadband
connections via Ethernet or fiber optic networks.

Smart meters bring a range of benefits compared to traditional meters. Some of the main features
they offer are energy billing, cutting down on electricity use, providing consumption curves for both
customers and utilities, detecting outages, monitoring power quality (including harmonics and
classifying voltage disturbances), identifying fraud and theft, enabling automated remote control, and
allowing for remote management of appliances.

Smart meters send out data at regular intervals, usually every hour or according to specific settings,
and this is known as time series data. A time series is a collection of data points arranged in the order
they occurred, with time typically serving as the independent variable. When we look at time series
data, our main goal is often to create reliable predictions for what trends might come next. When
working with time series data, it's important to keep in mind a few key aspects. You need to consider
if the data is stationary, whether there are any seasonal patterns, and if the target variable shows
autocorrelation [9].

Stationarity is an essential feature of time series data. A time series is seen as stationary when its
statistical characteristics, like mean and variance, stay the same over time, and its covariance does not
depend on time. The Dickey-Fuller statistical test is often utilized to determine if a time series exhibits
stationarity. For accurate modeling, it's best to work with a stationary time series. However, because
not all time series naturally exhibit stationarity, different transformations might be necessary to reach
that state.

Seasonality involves the familiar rhythms and cycles that appear consistently over time in a data
series. For example, people generally use less electricity at night than during the day, showing a clear
daily pattern in usage. People tend to use the most energy in the late afternoon, while the quietest times
are usually at the beginning and end of the day. Autocorrelation is about how similar observations are
to each other based on the time that separates them.

Gathering and examining data from smart meters in the IoT ecosystem gives decision-makers the
chance to predict electricity usage with precision. Moreover, analyzing smart meter data can help us
anticipate demand, allowing us to prevent crises and reach our goals with tailored pricing strategies. As
a result, it's important for public agencies, private companies, and other involved parties to have the
ability to handle large amounts of data and use advanced analytical tools to turn raw information into
useful insights.
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Figure 3. Essential information flow within the framework of an electricity grid.

Load Forecasting

Load forecasting, which involves predicting how much power will be used, can be divided into three
main types: short-term load forecasting (STLF), medium-term load forecasting (MTLF), and long-term
load forecasting (LTLF). STLF looks at predictions that cover the next hour to a week, MTLF takes a
broader view with forecasts from a week to a month, and LTLF extends its reach with projections that
can stretch from one month to several years. Among these, electrical short-term load forecasting plays
a crucial role in maintaining the reliable and efficient functioning of power systems. It is essential for
planning, scheduling, load flow analysis, managing contingencies, and maintaining the system [10],
[11].
Time Series Forecasting Steps

Time series forecasting comprises crucial phases meant to enable us to project future values by means
of historical data. We first define the problem by stating our predictions' goal and the time horizon. We
compile the data and polish it to handle any scaling difficulties, outliers, and missing values. We begin
building lags and moving averages once we delve into the data to find trends and seasonal patterns. We
next select a suitable model, train it, and evaluate its performance across several criteria. Following
validation, the model creates well calibrated forecasts that are implemented for continuous observation
to guarantee their accuracy over time. The following clarifies the basic processes of time series
forecasting [12]:

2. Materials and Methods
Data Cleansing

Frequently known as data cleansing, scrubbing, or rectification, this process finds and corrects any
erroneous, duplicate, incomplete, or inaccurate data in a dataset. This procedure comprises of spotting
errors and fixing them by means of data modification, updating, or deletion. Data cleansing helps to
improve the quality of datasets by means of more accurate, dependable, and consistent information, so
enabling organizations to make wise and successful decisions. Usually, four typical kinds of problems

that might be targeted on during the data cleansing process:
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1. Data cleansing helps to correct many kinds of mistakes in datasets, including spelling errors,
typos, incorrect numbers, syntax problems, and missing information. Fixing any empty or null
fields meant for data helps to guarantee the consistency and accuracy of the dataset.

2. Inconsistent Data: Names, addresses, and other specifics routinely show up in different forms
on many systems. For example, in one dataset you might find a customer's middle initial; in
another, it could be absent, or the terms and IDs might vary. Data cleansing simplifies
information analysis and helps to preserve consistency in datasets, so enabling reliable insights.

3. Data cleansing methods seek and correct duplicate records in datasets using either merging or
removal approaches. For instance, we can handle duplicate entries to create a single, whole
record when aggregating data from two separate systems.

4. Unrelevant Information: Certain data points—such as outliers or outdated entries—may not
really matter in the data analysis process and might skew the outcomes. Data cleansing helps
to remove extraneous data from datasets, so optimising the data preparation process and
reducing the need of processing and storage capacity required.

Time series decomposition

Which is a useful method for comprehending and evaluating time series data since it separates a time
series into its component elements. This method clarifies the several difficulties in time series analysis
and forecasting so enabling more significant insights and interpretations.

Modelling

Particularly when dealing with large historical datasets, selecting the appropriate model for a given
problem is crucial. In these contexts, we frequently resort to deep learning methods comprising:

1. Designed to learn from sequences of data and effectively grasp long-term relationships, long

short-term memory (LSTM) networks

2. Though they have a simpler architecture than LSTMs, Gated Recurrent Unit (GRU) networks

help to efficiently manage sequential data.

3. A type of feedforward neural network capable of capturing complex data relationships is the

multilayer perceptron (MLP).

These algorithms perform in time series forecasting and predict with different designs that help to
increase their accuracy. When data is few, you could want to look at applying machine learning
techniques including Prophet and Support Vector Regression (SVR). Conversely, you could apply auto-
regressive moving average (ARMA) and auto-regressive integrated moving average (ARIMA).

1. Forecasting

Among all the actions described here, the simplest one is the actual forecasting one. Usually, all you
have to do is indicate how many time steps you wish to forecast and call the forecast() or predict()
function of the model. This easy-to-use approach allows one to rapidly and with accuracy create
forecasts using the trained model.

2. Evaluation

Establishing evaluation metrics helps one to grasp the performance of a statistical or machine-
learning model. The following are the main benchmarks usually applied to evaluate the selected model

a. Mean Square Error (MSE): By averaging the squared deviations, the mean square error (MSE)
examines how far off the forecasts are from the real values.

MSE = ()T L, 0= 9)? )
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b. Root Mean Square Error (RMSE): By computing the square root of the average of the squared
deviations, Root Mean Square Error (RMSE) gauges how much the expected values differ
from the actual values.

1 "
wise =[O o3 @

c. Mean Absolute Percentage Error (MAPE): Expressing the forecast as a percentage, the mean
absolute percentage error (MAPE) indicates its degree of accuracy. It gauges the average
absolute percentage error between actual values and projected values.

_(N\yvnN |Gyl
MAPE = () 2, B2 100 (3)
These measures provide significant understanding of the model's performance, enabling comparisons
between several datasets and so support continuous improvement.

3. Results
Demand Side Management (DSM)

On the consumer side, controlling electricity usage calls for a deliberate attitude to our energy
consumption. It seeks to lower peak demand, increase energy efficiency, and help to support grid
stability. Along with the total consumption, DSM comprises several technologies, policies, and
initiatives meant to influence how and when consumers use energy [13]. Aimed at promoting more
efficient energy use and so helping to maintain the stability of the electrical grid, some strategies that
might be used are load shedding, load shifting, energy-saving initiatives, and demand response programs
[14], [15].

By helping utilities and grid operators strike a better mix between supply and demand, DSM reduces
the need for costly peaking power plants. DSM also influences how consumers use electricity, which
helps to significantly lower utility costs and lessens environmental impact. DSM is indispensable in
promoting a more sustainable and efficient energy system by lowering the demand for expensive new
power generating plants and transmission infrastructure.

DSM programs rely on consumers meaningfully participating. By providing educational campaigns,
real-time energy consumption data, smart metering, and simple-to-use interfaces allowing consumers to
keep track of and manage their electricity use, utilities and grid operators enable people to get involved.
When utilities share important information and offer incentives for energy conservation, they create a
partnership with consumers that strengthens the impact of demand-side management strategies and
encourages sustainable energy behaviors.

STLF and DSM

As mentioned earlier, there are several techniques that can be used to predict data for up to a week in
STLF. The expected values will be used to analyze and pinpoint peak demand times, allowing us to
develop strategies for effectively distributing loads throughout the day and reducing the necessity for
load-shedding operations. It's essential to understand that load-shedding procedures play a crucial role
in the DSM process.

DSM Programs

DSM programs are thoughtful strategies aimed at managing the load profile in a way that aligns with
utility goals. Our goals focus on keeping the power factor near 1.0 and making sure that peak load stays
within the system's capacity. By reaching these goals, utilities can enhance the energy production from
their installed units, which in turn boosts overall profit while reducing the average cost per kWh [16].
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Some common methods used to reach this goal are load shaping, peak clipping, valley filling, load
shifting, strategic conservation, strategic load growth, and flexible load shaping, as shown in Figure 4.

1.

Electrical Peak Clipping: This process involves managing the peak amplitude of an electrical
signal by reducing or removing the parts of the signal that go beyond a certain threshold.
Electrical Load Shifting: This means changing when we use electricity, moving our usage from
busy times to quieter times. The main goal is to make the most of our electrical infrastructure
and ease the pressure on the grid when demand is high.

Electrical Strategic Growth: Emphasizes creating and executing plans that help organizations
take advantage of opportunities, tackle challenges, and attain lasting growth in the electrical
industry.

Electrical Valley Filling: Used to help reduce voltage fluctuations or dips in the electrical grid.
Voltage sags, commonly known as voltage dips or brownouts, are brief drops in voltage levels
that can happen due to a range of reasons, such as faults, sudden shifts in load, or the activation
of large motors. Utilities can improve voltage stability and boost the reliability of the electrical
supply by using valley filling strategies.

Electrical Strategic Conservation: Aims to reduce energy waste, enhance efficiency, and
encourage sustainable practices. It requires a deep grasp of how energy is used, the adoption of
smart technologies, and a dedication to continuous enhancement and creativity in managing
energy.

Electrical Flexible Load Shaping: This process entails modifying or shifting electricity usage to
assist in maintaining balance within the power grid. The pattern of a flexible load can vary due
to several influences, such as the time of day, the day of the week, the season, and the general
state of the grid. By using flexible load shaping, utilities can improve grid stability and make
energy distribution more efficient.
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Figure 4. Common methods DSM

Employed Algorithms and Techniques in Load Forecasting

Dealing with various problems in power systems depends on knowing temporary electrical loads.
Many forecasting systems try to hourly estimate electrical loads. STLF has been addressed with a range
of methods and algorithms. Many studies use time series data and apply Vector Auto Regression (VAR),
ARMA, and ARIMA among other statistical techniques. Some research use machine learning
techniques including Extreme Gradient Boosting (XGBoost), Support Vector Regression (SVR), and
Random Forests (RF). Deep learning techniques including Temporal Convolutional Networks (TCN),
Feed Forward Neural Networks (FFNN), Back Propagation Neural Networks (BPNN), Recurrent Neural
Network (RNN), Long Short-Term Memory (LSTM), and Convolutional Neural Network (CNN) [17,
18] are also used in further study.

Furthermore, some studies have tackled this problem combining several approaches. With some
using machine learning methods and others investigating advanced deep learning models, many
researchers have greatly changed the discipline of load forecasting.
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Application of Selected Algorithms and Techniques

Two sections comprise this: the part on Models' Architecture, in which we investigate the several
architectures of algorithms and techniques applied in STLF; and the part on Data Cleaning, which
clarifies the approaches of dataset processing and management.

Design of Models
LSTM Model

Designed to solve the vanishing gradient issue, Long Short-Term Memory (LSTM) is a specialised
kind of recurrent neural network (RNN) that can thus capture long-term dependencies in sequential data.
LSTMs, unlike conventional RNNSs, use three gates—input, forget, and output—to control memory cells
under three gates: These gates control information flow so the network may discard pointless details
and keep pertinent data. Because LSTMs can efficiently handle sequential data, they are increasingly
applied in applications including time series forecasting, speech recognition, and machine translation.
Through data analysis in both forward and reverse directions, bidirectional LSTMs improve
performance even more. For challenging jobs like video analysis [19], LSTMs can also be coupled with
CNNes, see Figure 5.

Though they use more computational resources, LSTMs outperform conventional RNNs in learning
long-term dependencies. By combining some gates, variants like Gated Recurrent Units (GRUs)
simplify the architecture and provide a faster alternative with like performance. LSTMs find common
use in recommender systems, anomaly detection, and language modelling. Training LSTMs can be
difficult given their complexity even with their benefits. To improve performance, researchers have put
out ideas including stacked LSTMs and peephole connections. LSTMs specialise in temporal
sequences, hence they are more important in deep learning applications including time-dependent
patterns than CNNs, which shine in spatial data, see Figure 6.

Y X:i: Input
t Y. Output
hi: Hidden state

X
Figure 5. Traditional RNN
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XGBoost

Designed to operate in parallel for optimal performance, XGBoost is a simplified and effective
variation on the gradient boosting technique. By parallelising the whole boosting process, XGBoost
drastically reduces training time—as shown in Figure 7. This method can be used as a valuable tool for
selecting features and predicting loads over specific time periods [20]. XGBoost has proven itself in a
variety of classification and prediction tasks, showcasing its effectiveness and reliability.
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Figure 7. XGBoost Model
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Gated Recurrent Unit (GRU) Networks

The GRU is commonly utilized in Deep Learning, especially for tasks involving sequence
prediction. This type of RNN is particularly good at understanding long-term relationships in sequences
of data. The GRU stands out from other RNN architectures because it features just two gates: the reset
gate and the update gate [21]. Interestingly, it doesn't have a distinct cell state and instead uses the
hidden state to carry information through different time steps, as shown in Figure 8.

The following equations can be used in controlling the gating mechanism in GRU cells. During the
training process, the weight matrices are learned by an optimization algorithm.

ze = (W, - [he_q, x:]) (7)

Ye = U(Wy : [ht—lrxt]) (8)

hi =tanh (W - [y, X he_1, x¢]) )

hy =1 —2z) X h_qy +2z; X h{ (10)

hy
A
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Figure 8. GRU
Cleaning Up Data

This experiment makes use of AEP dataset, which you can find publicly available on Kaggle. This
dataset offers a detailed look at hourly power consumption, with each entry capturing the date, time,
and meter reading. It spans from January 2006 to August 2018, showcasing the country's energy usage
over time.

We started by taking a close look at the dataset, performing an initial review and some exploratory
data analysis to understand its quality. This is important because some forecasting methods depend
directly on the time series data, while others rely on key features that are derived from it. Using the
auto-correlation function (ACF) allows us to check if the time series is stationary, which can improve
the forecasting accuracy of traditional machine learning methods such as ARIMA. Figure 9 shows how
the dataset is spread out.

Figure 10 illustrates the relative significance of the dataset's extracted features. From the date time
column in the dataset, we gather features including the hour, day of the week, day of the month, day of
the year, month, and quarter.
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Using the robust scaler tool helped us to normalise the dataset for every model. Average the energy
values helped us to handle duplicate entries with the same date and time. We properly managed the
outliers using a capping process. We filled in any gaps where data might be absent using linear
interpolation to ensure our dataset is whole and every hour of the day is recorded.

Using the interquartile range (IQR) and training data median, we standardised the test data. This
method enables us to evaluate the model's performance on data it has not come across before and more
fairly depict real-world events. Normalising data depends on this approach since it guarantees that the
model is assessed in real-world situations. Figure 11 presents the division of the test and training data.
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Figure 9. AEP dataset
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Figure 11. Training and test data

Applying XGBoost Model

We examine in Figure 12 how the projected values of the XGBoost model match the actual ones. This
comparison considers significant hyperparameters including the maximum tree depth, set at 4, and the number
of estimators, set at 1000. Three error measures assess the model's performance on the test set. The Root Mean
Squared Error (RMSE) is 13,780,445, indicating the average magnitude of prediction errors in the same units as
the target variable. The Mean Absolute Error (MAE) is 2,848.89, representing the average absolute difference
between actual and predicted values. The Mean Absolute Percentage Error (MAPE) is 8.9%, showing the relative
error as a percentage of the actual values. These metrics provide a comprehensive assessment of the model's
accuracy. This suggests that the XGBoost model doesn't fit the data very well and isn't a good match for the case
study.
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Figure 12. XGboost results
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LSTM
Table 1 shows the parameters of the tested LSTM. The results have been shown in Figure 13. One can note that the
LSTM accuracy is higher than that of the XGboost.

Table. 1 LSTM parameters

Layer (type) Output Shape Param #
Istm (LSTM) (None, 5, 64) 18,688
dropout (Dropout) (None, 5, 64) 0
Istm_1 (LSTM) (None, 32) 12,416
dropout_1 (Dropout) (None, 32) 0
dense (Dense) (None, 16) 528
dense_1 (Dense) (None, 1) 17
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Figure 13. LSTM results
GRU
GRU model has been also applied. The parameters of the GRU have been listed in table. 2. Moreover, the results
have been shown in Figure 14.

Table 2. GRU parameters.

Layer (type) Output Shape Param #
gru (GRU) (None, 5, 64) 14,208
dropout_2 (Dropout) (None, 5, 64) 0
gru_1 (GRU) (None, 32) 9,408
dropout_3 (Dropout) (None, 32) 0
dense_2 (Dense) (None, 16) 528
dense_3 (Dense) (None, 1) 17
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Figure 14. GRU results

4. Discussion

GRU via LSTM Models Comparison

The comparison between GRU and LSTM on the test dataset shows that GRU outperforms LSTM across all
key performance metrics. The lower MSE (0.000603 vs. 0.000803) and MAE (0.016245 vs. 0.019818) indicate that
GRU produces more accurate predictions with smaller errors. Additionally, the higher R? value (0.972825 vs.
0.963804) suggests that GRU explains more variance in the data, making it a more reliable model for this task.
Given these results, GRU appears to be the better choice if computation time and complexity are similar. Further
analysis, such as statistical significance testing or training time comparison, could provide additional insights

into their relative advantages. The results of the comparison has been listed in table 3.
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Table 3. Model Comparison for GRU via LSTM

Model Set MSE MAE R"2
Model 1 (GRU) Test 0.000603 0.016245 0.972825
Model 2 (LSTM) Test |0.000803 0.019818 0.963804

5. Conclusion
Electricity is a crucial part of our everyday lives, powering everything from lights and heating to

cooling systems and the many devices we use at home, work, in industries, healthcare settings, and
entertainment spots. Ensuring that we have access to electrical energy and encouraging its efficient use
is essential for fostering sustainable development and protecting our environment. This paper shows
how deep learning techniques can effectively enhance the accuracy of short-term electrical load
forecasting. A crucial element in enhancing forecast accuracy is the thorough examination and
understanding of electrical load time series data. Recognizing these patterns and tackling possible
shortages is crucial for successfully using deep learning to achieve acceptable results. The integration
of deep learning into STLF enhances decision-making in DSM. By leveraging forecasted data, DSM
strategies such as load shifting, load clipping, and valley filling can be implemented, potentially
reducing the need for load-shedding and preventing service interruptions. This approach not only
provides electricity providers with clearer insights for strategy development but also encourages
consumer participation by promoting changes in electricity usage patterns.
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