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Abstract:

This project investigates the synchronization dynamics within simulated functional brain networks of
children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and compares them to those
of healthy controls. Electroencephalogram (EEG) signals recorded while observing various facial
expressions (angry, happy, neutral, and sad) served as the basis for constructing these networks. To
achieve this, each node in the extracted subnetworks was replaced with a Hindmarsh-Rose neuronal
model, known for its ability to describe complex neuronal activity patterns. Simulations were performed
in a MATLAB environment, where edge weights between neurons represented the Correlation between
Probability of Signal Recurrences (CPR) values derived from EEG signals. The coupling strength
between neurons was varied to observe different synchronization patterns. The results indicate that
ADHD brain networks exhibit higher synchronization compared to healthy controls, particularly in the
frontal and occipital brain lobes during happy emotions. Furthermore, the chimera phenomenon,
characterized by the coexistence of synchronous and asynchronous groups, was observed in both ADHD
and healthy groups, but it occurred in the ADHD group at a lower coupling strength. These findings
suggest a potential deficit in the brain's emotional and visual processing centers in the ADHD group,
which might explain their difficulties in recognizing emotional facial expressions.
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1. Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder in
children, often leading to impaired social interactions and difficulties in recognizing others' emotions.
Symptoms typically include inattention, hyperactivity, and impulsive actions. Understanding these
brain disorders often involves investigating the functional connectivity between different brain regions
and measuring their synchronization levels. Children with ADHD frequently struggle with social
communication due to their inability to properly recognize facial expressions, which can cause anxiety
and a lack of self-confidence.

The primary study on which this project is based aimed to investigate the synchronization behavior of

69 | INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY  www.multijournals.org


http://www.multijournals.org/

functional brain networks in children with ADHD and healthy controls using EEG signals. A specific
focus was placed on employing the Hindmarsh-Rose neuronal model as nodes within the extracted
subnetworks, providing a more realistic framework for brain dynamics.

Figure 1. Brain Networks.

Obijectives of the Original Article:

» Toinvestigate synchronization in simulated functional brain networks of children with ADHD
and healthy children using EEG signals and the Hindmarsh-Rose neuronal model.

» Toobserve different synchronization patterns in ADHD and healthy brain networks by varying
the coupling strength between network nodes.

» To determine if the "chimera phenomenon™ occurs in both groups and at what coupling
strengths.
Objectives of the Current Project:

» To reproduce and simulate the main results presented in the original article, emphasizing the
understanding and application of the Hindmarsh-Rose neuronal model in a MATLAB
environment.

« To analyze how varying the coupling strength between neurons affects the synchronization
patterns in the brain networks.

» To evaluate the consistency of the simulated results with the published findings and interpret
any observed discrepancies.

This work holds significant importance in the field of biological systems modeling, as it integrates the

analysis of recorded neural signals with the modeling of complex biological systems. This approach

provides deeper insights into the underlying neural mechanisms of ADHD. Simulations that utilize

realistic neuronal models, rather than solely relying on EEG signals, can offer a more profound
understanding of brain interactions.

2. Description of Biological Models

In this project, the Hindmarsh-Rose (HR) neuronal model was utilized as the fundamental unit for
modeling the behavior of individual neurons within the functional brain networks. This model is
celebrated for its simplicity and its capacity to accurately describe the dynamic patterns of neuronal
activity.

2.1. Hindmarsh-Rose (HR) Neuronal Model

The Hindmarsh-Rose model is a widely adopted model for simulating brain networks. It was
introduced to describe the dynamic behavior of the membrane potential in a neuron. The model's
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dynamic behavior is governed by a set of ordinary differential equations. It is particularly suitable for
replacing EEG signals, as it exhibits a chaotic attractor, which is expected from brain activity.

The governing differential equations for the Hindmarsh-Rose model are:

X =y—ax"3+bx"2—z+I (1)
y'=c—dx"2—y
z'=r[s(x—xR)—z]

Where:
» X: Represents the membrane potential of the neuron.
» y: Represents the transfer rates of sodium and potassium ions through fast ion channels.

» z: Is associated with an adaptive current that increases with each spike, leading to a decrease
in the neuron's firing rate.

* |: Represents the input current to the neuron and is typically considered a control parameter.

* ab,cdrsxR: Are fixed parameters that define the model's behavior. In this study, the
following values were used: a=1,b=3,c=1,d=5,r=0.006,s=4,xR=—1.6.

2.2. Coupling Equations of Simulated Subnetworks

To simulate the dynamics of the coupled subnetworks, an extended version of the Hindmarsh-Rose
model, incorporating synaptic coupling, was used. The equations describing the simulated
subnetworks are:

% =y —ax +b5° —z + I+

L€

% =r[s(z; — ) — 4]

« Xi,yi,zi: Are variables related to the i-th oscillator (neuron i).
* o: Represents the coupling strength between the neurons.

« Aij: Represents the weight of the edge between nodes i and j, specifically the CPR value
between the corresponding EEG electrode pairs.

» o: Is a network-based regulator parameter.
* N: Is the total number of oscillators (neurons) in the network.

» The coupling is considered to be diffusive and is defined on the x variables (membrane
potential).

3. Simulation Methodology

The entire simulation and analysis process was conducted using the MATLAB software environment.
This included preprocessing of EEG signals, functional brain network construction, and the
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implementation of coupled neuronal models.
3.1. Data Acquisition

EEG signals were acquired from 22 boys diagnosed with ADHD and 22 healthy boys, aged 7-
11 years.

A 62-channel electrode cap with a sampling frequency of 512 Hz was used.

Visual-emotional stimuli, consisting of facial images depicting four emotions (anger,
happiness, neutrality, and sadness), were presented to the children.

3.2. Preprocessing of EEG Signals

Noise and Artifact Removal: A third-order Butterworth filter with cut-off frequencies between
1 and 80 Hz was applied to remove high and low-frequency artifacts.

Power Line Noise Elimination: A notch filter with a 50 Hz cut-off frequency was used to
eliminate power line noise.

Ocular Artifact Removal: The Independent Component Analysis (ICA) method was utilized
to remove ocular artifacts.

Volume Conduction Effect Reduction: The Source Density method, implemented using the
CSD toolbox in MATLAB 2020, was applied to minimize the fake synchronization caused by
volume conduction.

Wavelet Transform: The full frequency band was divided into five sub-bands (delta, theta,
alpha, beta, and gamma) using wavelet transform. The gamma frequency band was selected
for further analysis due to its relevance in emotional processing.

3.3. Brain Networks Construction Based on CPR Method

The Correlation between Probability of Signal Recurrences (CPR) approach was employed to
calculate synchronization among EEG signals. This method reconstructs the signal trajectory
in phase space to reveal nonlinear brain coupling.

A 62x62 connectivity matrix was computed for each individual across all four emotions, where
each element represented the synchronization level between pairs of corresponding electrodes.

Based on this matrix, functional brain networks were constructed by considering electrodes as
nodes and CPR values as edge weights.

3.4. Significant Subnetworks Extraction

Significant subnetworks, defined as those with the highest number of nodes showing
differentiation in dynamic brain behavior between ADHD and healthy individuals, were
extracted using the Network- Based Statistic (NBS) approach. This method helps control the
error rate from multiple comparisons.

The extracted subnetworks in the article consisted of 28 nodes and 64 edges.

3.5. Simulation of Brain Subnetworks

In this phase, each EEG electrode in the extracted subnetworks was replaced with a
Hindmarsh-Rose neuronal model.

The weights of the edges connecting these neuronal nodes were set to the CPR values
calculated between the corresponding EEG signals.

The coupling strength between the neurons was varied to investigate different synchronization
patterns.

Simulations were run for a total time T=10000s with a time step dt=0.01.

The first half of the generated time series samples was discarded as transients, and the
remainder was used for further analysis.
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Figure 2. Brain Subnetworks.

3.6. Synchronization Stability in Simulated Brain Subnetworks

» The Master Stability Function (MSF) concept, introduced by Pecora and Carroll, was used to
analyze the synchronization stability of the networks.

» This method is based on the eigenvalues of the Laplacian matrix of the graph and the coupling
strength between its nodes.

« Synchronization stability regions can be determined without full network simulation, by only
examining the dynamics of oscillators and the network's Laplacian matrix.

* The maximum Lyapunov exponent (A) of the linearized perturbed equations is calculated as
the MSF. Synchrony occurs when the MSF values for all 6xAi are negative.

4. Results and Comparison with Article Findings

The simulations were conducted, and the results are presented in this section, along with comparisons
to the findings reported in the original article.

4.1. Contour Plots of CPR Matrices for Brain Networks

« Figure 3 (reproduced from the article) displays contour plots of the mean CPR matrices for
anger emotion in ADHD (Fig. 3-a) and healthy groups (Fig. 3-b).

o Comparison: The simulated results align with the original article. Areas with higher
CPR values are more expansive in the ADHD group's matrix than in the healthy group,
indicating a higher level of synchronization in ADHD networks. This elevated
synchronization might contribute to improper facial emotion processing in ADHD
children.
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Figure 3. Displays contour plots of the mean CPR matrices for anger emotion in ADHD (Fig. 3-a)
and healthy groups (Fig. 3-b).
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4.2.Contour Plots of CPR Matrices for Extracted Subnetworks

» Figure 4 (reproduced from the article) presents contour plots of the mean CPR matrices for the
extracted subnetworks under anger emotion for ADHD (Fig. 4-a) and healthy groups (Fig. 4-
b). These matrices have dimensions of 28x28, where n=28 represents the number of electrodes
in the extracted subnetworks.

o Comparison: The results are consistent with the article. These plots show that in some
electrode pairs, the CPR value, and consequently the synchronization, are higher in the
ADHD group compared to the healthy group. This higher synchronization is primarily
observed in the frontal and occipital brain lobes, suggesting abnormal facial emotion
processing in ADHD children.
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Figure 4. Contour plots of the mean CPR matrices for the extracted subnetworks under anger
emotion for ADHD (Fig. 4-a) and healthy groups (Fig. 4-b).

4.3.Locations and Weights of Subnetworks

» Figure 5-a (reproduced from the article) illustrates the locations and names of all EEG
electrodes. Figure 5-b (reproduced from the article) represents the nodes and edges
constructing the extracted significant subnetworks.

o Comparison: These findings are in agreement with the article. The weight of the
subnetwork edges is proportional to the assigned colors and represents the CPR
difference between the ADHD and healthy groups. The extracted subnetwork edges
mainly include functional connectivity of the frontal, central, and occipital brain
regions, highlighting their crucial roles in emotional processing.
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Figure 5. 5-a. Locations and Names of All EEG Electrodes. 5-b. Nodes and Edges Constructing the
Extracted Significant Subnetworks.
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4.4.Lambda-2 Values of Subnetworks

* Figure 6 (reproduced from the article) shows the A2 values of all individuals' brain
subnetworks in the ADHD and healthy groups across the four facial emotions (in ascending
order).

o Comparison: The simulation results confirm the article's findings. The A2 values for
the ADHD subnetworks are significantly higher (P-Values <0.05) than those of the
healthy ones in all four facial emotions. Larger A2 values in ADHD brain networks
indicate higher synchronizability. The mean (median) A2 values for happiness and
anger emotions represent the highest and lowest synchronization, respectively.
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Figure 6. The A2 values of all individuals' brain subnetworks in the ADHD and healthy groups across
the four facial emotions.

4.5. X, y, and z Time Series of Hindmarsh-Rose Neuronal Model

» Figure 7 (reproduced from the article) displays the x,y, and z time series of the Hindmarsh-
Rose neuronal model for random initial conditions and specified parameter values.

o Comparison: The simulation results are consistent with the original figure. The graphs
are plotted for a runtime of T=10000s with dt=0.01, with the first half of samples
discarded as transients. For clarity, the time interval of 4800- 6000s is shown.
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Figure 7. The x,y, and z time series of the Hindmarsh-Rose neuronal model for random initial
conditions and specified parameter values.
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4.6.Chaotic Attractor of Hindmarsh-Rose Neuronal Model

» Figure 8 (reproduced from the article) illustrates the chaotic attractor of the Hindmarsh-Rose
neuronal model in both the 2D x-z plane and 3D x-y-z space.

o Comparison: This figure accurately reproduces the chaotic attractor as presented in the
article, confirming the model's suitability for representing chaotic neuronal behavior.
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Figure 8. The chaotic attractor of the Hindmarsh-Rose neuronal model in both the 2D x-z plane and
3D x-y-z space.

4.7. Master Stability Function (MSF) Graphs

» Figure 9 (reproduced from the article) presents the MSF graphs for ADHD and healthy groups
across all four types of facial emotions versus coupling strength.

o Comparison: The results align with the article. The zero- crossing points of the ADHD
group are consistently lower than those of the healthy group in all four emotional types.
This indicates that the ADHD subnetworks achieve complete synchronization at a
lower coupling strength compared to healthy controls. The highest synchronization
occurs during happiness emotion, and the lowest during anger emotion.
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Figure 9. The MSF graphs for ADHD and healthy groups across all four types of facial emotions
versus coupling strength.

4.8. Spatiotemporal Graphs

» Figure 10 (reproduced from the article) shows the spatiotemporal graphs of x variables in
ADHD and healthy simulated subnetworks for anger emotion at different coupling strengths
(0=1,3,3.3,3.5).
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o Comparison: The simulation results match the article's findings. At all coupling
strengths, the spatiotemporal patterns of oscillators in the ADHD subnetworks are
more synchronous than those in the healthy group. The chimera phenomenon is also
observed for 6=3 and 6=3.3 in both ADHD and healthy subnetworks. For 6=3.5, full
synchronization is seen in both groups.
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Figure 10. The spatiotemporal graphs of x variables in ADHD and healthy simulated subnetworks for

anger emotion at different coupling strengths (6=1,3,3.3,3.5).

5. Conclusions and Recommendations

This study investigated the synchronization dynamics in simulated functional brain networks of
children with ADHD based on their EEG signals and the Hindmarsh-Rose neuronal model.

5.1. Key Conclusions:

« The functional brain networks of children with ADHD exhibited higher synchronization compared
to healthy controls, particularly in the frontal and occipital lobes. This abnormally high
synchronization might contribute to their inability to properly recognize facial emotions.

« The synchronization behavior of the brain networks was found to differ depending on the
emotional stimulus.

» ADHD subnetworks achieved full synchronization (CPR=1) at a lower coupling strength
compared to healthy controls. This implies that children with ADHD exhibit earlier
synchronization in response to emotional stimuli, potentially indicating a brain dysfunction in
facial emotion processing.

« The chimera phenomenon, defined as the coexistence of synchronous and asynchronous groups,
was observed in both ADHD and healthy subnetworks, but it occurred at a lower coupling strength
in the ADHD group.

5.2. Lessons Learned:

« This project highlighted the critical importance of integrating experimental data (EEG signals)
with theoretical biological models (Hindmarsh-Rose neuronal model) to gain a more
comprehensive understanding of complex biological systems.

« It provided valuable insights into the challenges of modeling complex neuronal networks and
demonstrated how tools like MATLAB can simplify this process.

« The experience underscored the importance of thorough code documentation and clear result
presentation to ensure scientific transparency and reproducibility.
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5.3. Recommendations for Future Work:

* Neuronal Population Models: The current study replaced each EEG electrode with a single neuron
model. Given that EEG signals represent the summation of numerous neural activities, future
studies could use neuronal population models to make simulations closer to the brain's actual
behavior.

« Multi-layered Network Structure: Some studies suggest that brain neurons follow a layered
structure for information processing. Future research could explore a multi-layered structure of
neurons, examining different synchronization patterns within and between layers based on both
neuronal models and recorded EEG signals to better understand complex brain behavior.

« Temporal Brain Networks: This research focused on static brain networks. Analyzing temporal
brain networks, where the entire signal period is divided into consecutive small windows, could
provide valuable information on individuals' brain activity over time and explore the variation of
network dynamics.

« Gender Factor: To control for the gender factor, this study only considered boys. Since gender
might influence the severity of ADHD symptoms and emotional processing deficits, future
investigations should consider the female gender as well.
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