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The optimization problem is demonstrated to be an NP-Hardness problem in this research using a
sound methodology. First off, one of the most significant NP-hardness issues in combinatorial
optimization is the K-cluster problem. Second, an issue is considered difficult if it cannot be
resolved specifically (i.e., in polynomial time) by a workable algorithm. Additionally, the approach
taken in this paper is to use a method to demonstrate that the problem is NP-Hard. If any problem
from NP can be reduced to it, as shown by means reductions, then the problem is NP-Hard.
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INTRODUCTION

A k-cluster is a subgraph on k vertices (nodes) (V) of a graph G=(V, E) that maximizes the number
of edges (E) [1,3], which means: The average degree, which is represented by the greatest density
[2] of a subgraph G=(V,E) on k vertices, is computed given the graph G=(V,E) and the parameter k.
Clustering is a widely used method in multivariate data analysis. Its goal is to look at the inherent
natural shapes of data items, where objects are as similar to one another as feasible within a cluster
and as dissimilar from one another as possible between clusters. The clusters' equivalence groups
offer a means of generalizing the properties of the data objects. Clustering techniques are used.
numerous fields, including Furthermore, a discriminant analysis' goal is to strengthen the
categorization that has previously been provided by enhancing class demarcations, whereas a cluster
analysis' first step is to describe the class structure, making them completely unrelated concepts.
Clustering is an examination of the outcomes of exploration. The parameters of the resulting
analysis of the cluster may, as a result, be unknown to the explorer [2,4]. Since the k cluster
problem is one of the applications of semidefinite programming, we will now give a brief field
overview of semidefinite programming before reviewing the fundamental research tools.

25 | INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY www.multijournals.org



Clustering of Combinatorial Optimization

numerous significant combinatorial optimization problems can be cast as problems in NP, usually it
would be dealing with approach the task of graph clustering from the common strategy of
combinatorial optimization. In other words, the problem is formalized by introducing an objective
function that assigns a numerical score to each discrete clustering of a graph, measuring how well it
embodies community structure [1]. Optimizing the objective function over all possible clustering
will then return “the best” partitioning of the graph with respect to a well-defined measure. As an
example, one way to partition a graph G into two pieces is to identify a set of nodes S that
minimizes the following function f, referred to as the normalized cut objective [7,11]:

The number of edges leaving S The number of edges leaving S

f($) =

Minimizing f will produce two clusters (nodes in S, and nodes not in S) that are both nontrivial in
size and share few edges with each other [12].

NP-Hard in Clusters

A graph G = (V,E) is referred to as a cluster graph when each connected component of G is a full
graph. For instance, a clique is a fully-completed subgraph of a graph (V, E’), as shown in Figure (1)
[10]. The optimization problem is to identify the maximum clique in the graph, whereas the
decision problem is to determine whether the graph has a clique of size k. The following proof
shows that a clique choice problem is an NP-hard problem for big graphs. Figuring out the size of a
clique is an NP problem because, for large graphs, this answer cannot typically be verified in
polynomial time. If we are given a clique, we can quickly verify if it is a clique of size k by
counting the number of vertices in the clique.

+
The number of edge endpointsin S = The number of edge endpoints notin S

Figure 1: An Example of Cliques in a Graph.
K- Clusters Problem:

Finding a subgraph with the highest weight and precisely k nodes (1 <k <n — 1) is required for the
K-clusters problem. According to Deogun et al. (1997), [3,8,9,13], this is a classic combinatorial
optimization issue that is both NP-hard and difficult to estimate. The semidefinite-based branch-
and-bound technique was previously used to solve the K-CLUSTER problem to optimality, and it
outperformed the convex quadratic relaxation method. Clustering is often a widely used
multivariate data analysis technique. The goal is to look into the data items' innate natural structure,
which favors objects being as similar to one another and as diverse from one another as possible
inside a cluster. The equivalence classes of the clusters offer a means of generalizing over the data
objects and their properties [3]. Numerous disciplines, including health, psychology, economics,
and pattern recognition, use clustering techniques. Clustering is frequently mistaken for
classification or discriminant analysis. The two methods of data analysis are characterized by the
following distinctions and correspond to different concepts:

1. Clustering differs from classification in that, the classification allocates items to
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pre-defined classes, whereas clustering requires no previous knowledge of the object classes or their
members.

2. The cluster analysis differs from a discriminant analysis in that the former seeks to enhance an
existing classification by reinforcing class demarcations, whilst the latter requires first establishing
the class structure. (see Figures 2 and 3).
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Figure 2: An example of cluster analysis.
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Figure 3: An example of discriminant cluster analysis.

Clustering is a type of data exploration . As a result, the explorer may have no or limited knowledge
of the parameters of the cluster analysis that results [5]. Clustering is used in a variety of ways and
the objective is to figure out everything of the following:

1. The size of the clusters.

2. The clusters’ absolute and relative locations.

3. The number of clusters.

4. Cluster density that is clusters based on density are dense areas in the data space
divided by sparser portions.

Approximate Method Augmented Lagrangian and Penalty methods

An extremely active field in optimization is approximation approaches. Think about the convex
function G : R™ — R that minimizes to a convex set X. To replace G and X with approximate G*
and approximate X*. is the purpose of approximation methods . The approximation approach will
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only work if the approximation is easier than the actual problem. We made an effort to determine k
for every cycle.
k+1 _ ; k
x*"" = arg min G*(x)

Consequently, at the following iteration, the approximation that depends on the new point x**1
generates G¥*1 and x**1. This concept serves as the foundation for several excellent approximation
techniques, including the penalty approach, the augmented Lagrangian method, and interior point
methods.The penalized and modified Lagrangian methods are the main topics of our research [1].
Constraints generally make algorithmic solutions more difficult and reduce the number of workable
solutions for optimization problems. So it only makes sense to attempt to loosen limitations by
roughly estimating the pertinent indicator function. with instance, swap out limits with punishment
functions that come with high financial penalties [15]. Given by is the linear equality constraint
issue.

Min (c, x)
subjectto (a;, x) = b;,i = 1,...,1,

x € X.
substituted a penalized version for the aforesaid issue.
Min (¢, x) + a* ¥i_ P,({ay, x) — by)
subjectto x € X.

The solution X* of the penalized issue tends to reduce the constraint violation as the scalar a*
approaches zero, which results in an increasingly accurate approximation of the original problem.
The optimal answer to each approximating problem should be used to begin iterating the next
approximating problem. This is a crucial practical point. One choice for Pq is the quadratic
punishment function, and the penalized problem (1.3) looks like this:

([12], [14])

e . 1
minimize (c, x) + > 14, — b||*
subjectto x € X.

where A, = b represents the system of equation (a;,x ) = b;,i = 1,...,1. . The penalty function
approach, where we add a linear component to P, (y),, involving a multiplier vector y™ € R™. is
much improved by the augmented Lagrangian method. After that, we resolve the issue in place of
problem (1.3).

minimize (c,x) + (y*)T (Ax — b) +— ||A, — b||?

2ak

subjecttox € X.

The multiplier vector y* is updated by a method that attempts to approximate an optimal dual
solution [6], so that after the aforementioned problem's x* solution is discovered.
1
Y = YR 4 (A= b)
This is referred to as It is known as first-order augmented Lagrangian techniques or the first-order

method of multipliers. For equality and inequality criteria, the augmented Lagrangian and penalty
techniques are both applicable [12].
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Optimization Algorithms Design

Finding the optimal design parameters that also meet the design requirements is the goal of design
optimization. In real terms, this implies that parametric optimization algorithms automatically test
different iterations of your design based on the variables and goals you have set. A mass decrease of
a design would be a typical optimization. In order to decrease the block ([8], [11]), specific model
parameters are chosen as variables that can be altered by the algorithms. A maximum stress level is
also established as an aim that the algorithms must meet.

Definitions and Properties

1. (Adjacency matrix) [3] n-vertex graph with the adjacency matrix G = (V, E) is the matrix x €
M,, whose entries are:

a;; = Indicator 1 denotes the existence of an edge between vertices i and j.
a;; = The value 0 denotes the lack of an edge between vertices i and j.

An example of adjacency matrix representation of an undirected and figure is given below:

0 1 2 3
0| o 1 0 1

O—©

e a 3 1 0 1 0

Figure 4: Undirected Graph Adjacency Matrix Representation

Definition 2. [11] The output that you wish to maximize or decrease is referred to as an objective
function. For instance, in aeronautical engineering, the goal is frequently to reduce weight while the
aim function is typically to maximize portfolio value. In the following illustration, the mountain
climber's target function is to reach the highest peak, hence the goal function is to maximize, (see
Figure 5).

objective(s)

objective(s)

Figure 5: Simple example of objective function
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Relaxation for Semidefinite Programming

Let's begin by going over the concept of convex relaxations. One of the most effective methods for
creating approximate polynomial-time algorithms for NP-hard optimization problems, such as
Chromatic Number, MAX-CUT, and Minimum Vertex Cover, among others, is this one [1]. In
order to construct approximation approaches for these issues, the issue is rewritten as an integer
program. The integer program is then transformed into a convex program that can be solved in
polynomial time, such as a linear program (LP) or a semidefinite program (SDP). Then, by
developing a (perhaps randomized) polynomial-time method to convert the result of such a convex
relaxation into an integer solution for the combinatorial issue, or "rounding,” the solution to the
combinatorial problem is discovered. However, semidefnite programming is not a recent concept of
combinatorial optimization. In fact, semidefinite programming has recently gained popularity as a
method for developing more efficient algorithms for approximating hard combinatorial optimization
problems and, more broadly, polynomial optimization problems, which include optimizing a
polynomial objective function over a simple closed semi-algebraic set. Since its introduction in the
1990s, the semidefinite relaxation approach has sparked a lot of interest in combinatorial
optimization. Finally, semidefinite relaxation is now recognized as an effective method and have
close bounds for a wide range of complicated problems and the strategy would be to replace a
binary vector variable with a continuous matrix variable,

The General Formula of K-cluster Problem and Bound Procedure

Problem with K-Cluster entails locating a subgraph with the heaviest weight and exactly k nodes (1
<k <n — 1) when there is an edge weighted graph with n vertices. This is a classic combinatorial
optimization problem, also known as the When all edge weights are equal to 1, the following
problems arise: (heaviest k-subgraph problem), (k-dispersion problem), (k-defence-sum problem),
and (densest subgraph problem). The k-cluster problem entails evaluating a subset S € V of k
vertices such that the number of the weights of the edges between vertices in S is maximized
according to given a graph G = (V,E). Letting n = |V | denote the number of vertices, and w;; denote
the edge weight for ij € E and w;; =0 for ij & E the problem can be modeled as the optimization
problem:
Max = ZTWz
STe'z =k

z € {0,1}" ,k € Z.
The Penalty and Augmented Lagrangian Methods

The goal of an optimization issue is to maximize or minimize a function while taking certain
limitations into account. The overall optimization issue provided by [12, 13,]:

Min f(x)
STXxEX.

The function f is defined from a convex set X € R™ into R. A point x* € X is a local solution of
problem (4.1) if there exists a neighborhood B(x*, t) such that f(x*) < f(x) forallx €
B(xt) N X ={x € X|llx —x"I< t}

The basic penalty method and augmented Lagrangian method are summarized in
Algorithms (1), (2) respectively.
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Algorithm [: Penalty Method

1 Minimize the dual function.
2 Reduce o.

3 Repeat.

Algorithm 2: Augmented Lagrangian Method

1 Forgiven X° € S™,y,,and a® > 0.
2 Find y*** such that

y¥*t = argminy, La® (y, X¥).
3 Update the Lagrange multiplier X*.
4 Reduce a.

5 Repeat.

Julia Language (JuliaBox)

A dynamic, high-performance, high-level programming language is Julia. Although it can be used
to create any application because it is a general-purpose language. A type system with parametric
polymorphism in a dynamic programming language with multiple dispatches as its primary
programming paradigm is one of Julia's design's distinguishing features. In order to develop a free
language that was both high-level and quick, Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and
Alan Edelman founded Julia in 2009. The team debuted a website on February 14, 2012, along with
a blog post describing the goal of the language [2]. Julia is used by setting up a user account,
signing into the website, and working on it while connected to the internet. It is possible to work on
it without access to the internet, but only if the necessary packages are present.

Numerical Results

In this section, we’ll go through our results and evaluate the performance of the suggested
development method. These tests were performed using a particular graph that was imported from
the Big Mac library. [8]. There are 50 nodes connected by 1214 edges in these 106 graphs as shown
in Figures (6) respectively, as well as on the other types of graphs. we implemented the Augmented
Lagrangian, Penalty and Hybrid methods for solving the semidefinte programming. This section's
figures display the quantity of function calls made by the different techniques of solving K-
CLUSTER PROBLEM. The exact solution to our problem was given by SB and CSDP solvers [11]
. Types graphs of various sizes were tested, and the results were extracted and displayed in this part.
Finally, our results depend on a new approach by using backtracking line search instead of huge line
search.
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Figure 6: design the graph from Big Mac library and contain (50 vertices and 1214 edges)

Elementary Numerical Results of Graphs g05-60 (Function Calls)

In order to achieve the idea accurately and to obtain results through which it is possible to infer the
fastest method of convergence to the bound of optimal solution, we’ve picked various problems
(905-60) from the Big Mac Library to work on as shown in Table (1) and the graphs in Figure (6).
In fact, these problems contain 60 nods and 885 edges. Also, we used three approaches in these
tests: Penalty method, Augumented Lagrangian method and Hybrid method. It was shown that the
Augmented Lagrangian Method is more accurate than the method of Penalty Method, which means
that the Augmented lagrangian method is the best, therefore it is provide the optimal solution of this

cluster.

Our results
Problem PENfcalls AUG .fcalls Hybrid fcalls
g05 60.0 753 587 531
g05 60.1 851 443 493
g05 60.2 409 252 224
g05 60.3 890 851 523
g05 60.4 491 351 463
g05 60.5 873 321 444
g05 60.6 503 236 261
g05 60.7 789 514 481
g05 60.8 444 231 213
g05 60.9 517 270 394

Total winner fcalls 0 5 5

Table 1: Numerical results of graphs (g05-60)

32 | INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY www.multijournals.org



g05_60.4

5320 :
1
! PEM
I ——— AL
| T |
53151 i
1
|
|
|
531.0 - 'l
\ L
R—— .
5305
530.0 L= : L L L
100 200 300 400 500

Figure 6: Convergence of the optimal solution between the methods

Conclusions

The peaper goals and objectives were met, and the following information was gleaned:

1. Development anew relaxation of the feasible region to provide the Augmented lagrangian
method based on penalty method.

2. The outcomes showed that, in terms of meeting the goal bound, the Augmented Lagrangian
Method was superior to the Penalty Method.

3. The Hybrid method, which alternates between the penalty and inequality Augmented
Lagrangian methods, is also put to the test. The results showed that the Hybrid approach
outperformed the two alternatives separately.

4. It has been proven that the K-CLUSTER combinatorial optimization problems is
NP-Hardness problem in graph clustering with large scale of variables.

A new algorithm has been developed by which the bound is improved and it works on NP-
Hardness problem.

7. Develop theoretical convergence properties.
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