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Abstract:  

 

The optimization problem is demonstrated to be an NP-Hardness problem in this research using a 

sound methodology. First off, one of the most significant NP-hardness issues in combinatorial 

optimization is the K-cluster problem. Second, an issue is considered difficult if it cannot be 

resolved specifically (i.e., in polynomial time) by a workable algorithm. Additionally, the approach 

taken in this paper is to use a method to demonstrate that the problem is NP-Hard. If any problem 

from NP can be reduced to it, as shown by means reductions, then the problem is NP-Hard.  

Keywords: Graph clustering, K-cluster problem, semidefinite programming, combinatorial 

optimization problems, and polynomial-time. 

 

INTRODUCTION 

A k-cluster is a subgraph on k vertices (nodes) (V) of a graph G=(V, E) that maximizes the number 

of edges (E) [1,3], which means: The average degree, which is represented by the greatest density 

[2] of a subgraph G=(V,E) on k vertices, is computed given the graph G=(V,E) and the parameter k. 

Clustering is a widely used method in multivariate data analysis. Its goal is to look at the inherent 

natural shapes of data items, where objects are as similar to one another as feasible within a cluster 

and as dissimilar from one another as possible between clusters. The clusters' equivalence groups 

offer a means of generalizing the properties of the data objects. Clustering techniques are used. 

numerous fields, including Furthermore, a discriminant analysis' goal is to strengthen the 

categorization that has previously been provided by enhancing class demarcations, whereas a cluster 

analysis' first step is to describe the class structure, making them completely unrelated concepts. 

Clustering is an examination of the outcomes of exploration. The parameters of the resulting 

analysis of the cluster may, as a result, be unknown to the explorer [2,4]. Since the k cluster 

problem is one of the applications of semidefinite programming, we will now give a brief field 

overview of semidefinite programming before reviewing the fundamental research tools. 
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Clustering of Combinatorial Optimization 

numerous significant combinatorial optimization problems can be cast as problems in NP,  usually it 

would be dealing with approach the task of graph clustering from the common  strategy of 

combinatorial optimization. In other words, the problem is formalized by  introducing an objective 

function that assigns a numerical score to each discrete clustering  of a graph, measuring how well it 

embodies community structure [1]. Optimizing the  objective function over all possible clustering 

will then return “the best” partitioning of  the graph with respect to a well-defined measure. As an 

example, one way to partition  a graph G into two pieces is to identify a set of nodes S that 

minimizes the following function f, referred to as the normalized cut objective [7,11]: 

𝑓(𝑆)  =
The number of edges leaving S

The number of edge endpoints in S
+

The number of edges leaving S

The number of edge endpoints not in S
 

Minimizing f will produce two clusters (nodes in S, and nodes not in S) that are both  nontrivial in 

size and share few edges with each other [12]. 

NP-Hard in Clusters 

A graph 𝐺 = (𝑉, 𝐸) is referred to as a cluster graph when each connected component of 𝐺 is a full 

graph. For instance, a clique is a fully-completed subgraph of a graph (𝑉, 𝐸), as shown in Figure (1) 

[10]. The optimization problem is to identify the maximum clique in the graph, whereas the 

decision problem is to determine whether the graph has a clique of size 𝑘. The following proof 

shows that a clique choice problem is an NP-hard problem for big graphs. Figuring out the size of a 

clique is an NP problem because, for large graphs, this answer cannot typically be verified in 

polynomial time. If we are given a clique, we can quickly verify if it is a clique of size k by 

counting the number of vertices in the clique. 

 

Figure 1: An Example of Cliques in a Graph. 

K- Clusters Problem: 

Finding a subgraph with the highest weight and precisely k nodes (1 < k < n − 1) is required for the 

K-clusters problem. According to Deogun et al. (1997), [3,8,9,13], this is a classic combinatorial 

optimization issue that is both NP-hard and difficult to estimate. The semidefinite-based branch-

and-bound technique was previously used to solve the K-CLUSTER problem to optimality, and it 

outperformed the convex quadratic relaxation method. Clustering is often a widely used 

multivariate data analysis technique. The goal is to look into the data items' innate natural structure, 

which favors objects being as similar to one another and as diverse from one another as possible 

inside a cluster. The equivalence classes of the clusters offer a means of generalizing over the data 

objects and their properties [3]. Numerous disciplines, including health, psychology, economics, 

and pattern recognition, use clustering techniques. Clustering is frequently mistaken for 

classification or discriminant analysis. The two methods of data analysis are characterized by the 

following distinctions and correspond to different concepts: 

1. Clustering differs from classification in that, the classification allocates items to 
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pre-defined classes, whereas clustering requires no previous knowledge of the object  classes or their 

members. 

2. The cluster analysis differs from a discriminant analysis in that the former seeks to enhance an 

existing classification by reinforcing class demarcations, whilst the latter requires first establishing 

the class structure. (see Figures 2 and 3). 

 

Figure 2: An example of cluster analysis. 

 

Figure 3: An example of discriminant cluster analysis. 

Clustering is a type of data exploration . As a result, the explorer may have no or limited  knowledge 

of the parameters of the cluster analysis that results [5]. Clustering is used  in a variety of ways and 

the objective is to figure out everything of the following: 

1. The size of the clusters. 

2. The clusters’ absolute and relative locations. 

3. The number of clusters. 

4. Cluster density that is clusters based on density are dense areas in the data space 

divided by sparser portions. 

Approximate Method Augmented Lagrangian and Penalty methods 

An extremely active field in optimization is approximation approaches. Think about the convex 

function 𝒢 ∶  𝑅𝑛  →  𝑅 that minimizes to a convex set 𝑋. To replace G and X with approximate 𝒢𝑘 

and approximate 𝑋𝑘. is the purpose of approximation methods . The approximation approach will 
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only work if the approximation is easier than the actual problem. We made an effort to determine k 

for every cycle. 

𝑥𝑘+1 = arg min
𝑥∈𝑋𝑘

𝒢𝑘(𝑥) 

Consequently, at the following iteration, the approximation that depends on the new point 𝑥𝑘+1 

generates 𝒢𝑘+1 and 𝑥𝑘+1. This concept serves as the foundation for several excellent approximation 

techniques, including the penalty approach, the augmented Lagrangian method, and interior point 

methods.The penalized and modified Lagrangian methods are the main topics of our research [1]. 

Constraints generally make algorithmic solutions more difficult and reduce the number of workable 

solutions for optimization problems. So it only makes sense to attempt to loosen limitations by 

roughly estimating the pertinent indicator function. with instance, swap out limits with punishment 

functions that come with high financial penalties [15]. Given by is the linear equality constraint 

issue.  

Min ⟨𝑐, 𝑥⟩ 

subject to ⟨𝑎𝑖, 𝑥⟩  =  𝑏𝑖 , 𝑖 =  1, . . . , 𝑙, 

𝑥 ∈  𝑋. 

substituted a penalized version for the aforesaid issue. 

Min ⟨𝑐, 𝑥⟩ + 𝛼𝑘 ∑ 𝑃𝑞(⟨𝑎𝑖, 𝑥⟩  −  𝑏𝑖)
𝑙
𝑖=1  

subject to 𝑥 ∈  𝑋. 

The solution 𝑋𝑘 of the penalized issue tends to reduce the constraint violation as the scalar 𝛼𝑘 

approaches zero, which results in an increasingly accurate approximation of the original problem. 

The optimal answer to each approximating problem should be used to begin iterating the next 

approximating problem. This is a crucial practical point. One choice for Pq is the quadratic 

punishment function, and the penalized problem (1.3) looks like this: 

([12], [14]) 

minimize ⟨𝑐, 𝑥⟩ +
1

2𝛼𝑘  ‖𝐴𝑥 − 𝑏‖2 

subject to 𝑥 ∈  𝑋. 

where 𝐴𝑥 = 𝑏 represents the system of equation ⟨𝑎𝑖, 𝑥 ⟩  =  𝑏𝑖, 𝑖 =  1, . . . , 𝑙. . The penalty function 

approach, where we add a linear component to 𝑃𝑞 (𝑦),, involving a multiplier vector 𝑦𝑛  ∈  𝑅𝑛. is 

much improved by the augmented Lagrangian method. After that, we resolve the issue in place of 

problem (1.3). 

minimize ⟨𝑐, 𝑥⟩  +  (𝑦𝑘)𝑇 (𝐴𝑥 −  𝑏)  +
1

2𝛼𝑘  ‖𝐴𝑥 − 𝑏‖2 

subject to 𝑥 ∈  𝑋. 

The multiplier vector 𝑦𝑘 is updated by a method that attempts to approximate an optimal dual 

solution [6], so that after the aforementioned problem's 𝑥𝑘 solution is discovered. 

𝑦𝑘+1  =  𝑦𝑘  +
1

𝛼𝑘
 (𝐴𝑥𝑘 − 𝑏) 

This is referred to as It is known as first-order augmented Lagrangian techniques or the first-order 

method of multipliers. For equality and inequality criteria, the augmented Lagrangian and penalty 

techniques are both applicable [12]. 
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Optimization Algorithms Design 

Finding the optimal design parameters that also meet the design requirements is the goal of design 

optimization. In real terms, this implies that parametric optimization algorithms automatically test 

different iterations of your design based on the variables and goals you have set. A mass decrease of 

a design would be a typical optimization. In order to decrease the block ([8], [11]), specific model 

parameters are chosen as variables that can be altered by the algorithms. A maximum stress level is 

also established as an aim that the algorithms must meet. 

Definitions and Properties 

1. (Adjacency matrix) [3] n-vertex graph with the adjacency matrix G = (𝑉, 𝐸) is the matrix 𝑥 ∈
𝑀𝑛 whose entries are: 

𝑎𝑖𝑗  = Indicator 1 denotes the existence of an edge between vertices i and j. 

𝑎𝑖𝑗  = The value 0 denotes the lack of an edge between vertices i and j. 

An example of adjacency matrix representation of an undirected and figure is given below:  

 

Figure 4: Undirected Graph Adjacency Matrix Representation 

Definition 2. [11] The output that you wish to maximize or decrease is referred to as an objective 

function. For instance, in aeronautical engineering, the goal is frequently to reduce weight while the 

aim function is typically to maximize portfolio value. In the following illustration, the mountain 

climber's target function is to reach the highest peak, hence the goal function is to maximize, (see 

Figure 5). 

 

Figure 5: Simple example of objective function 
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Relaxation for Semidefinite Programming 

Let's begin by going over the concept of convex relaxations. One of the most effective methods for 

creating approximate polynomial-time algorithms for NP-hard optimization problems, such as 

Chromatic Number, MAX-CUT, and Minimum Vertex Cover, among others, is this one [1]. In 

order to construct approximation approaches for these issues, the issue is rewritten as an integer 

program. The integer program is then transformed into a convex program that can be solved in 

polynomial time, such as a linear program (LP) or a semidefinite program (SDP). Then, by 

developing a (perhaps randomized) polynomial-time method to convert the result of such a convex 

relaxation into an integer solution for the combinatorial issue, or "rounding," the solution to the 

combinatorial problem is discovered. However, semidefnite programming is not a recent concept of 

combinatorial optimization. In fact, semidefinite programming has recently gained popularity as a 

method for developing more efficient algorithms for approximating hard combinatorial optimization 

problems and, more broadly, polynomial optimization problems, which include optimizing a 

polynomial objective function over a simple closed semi-algebraic set. Since its introduction in the 

1990s, the semidefinite relaxation approach has sparked a lot of interest in combinatorial 

optimization. Finally, semidefinite relaxation is now recognized as an effective method and have 

close bounds for a wide range of complicated problems and the strategy would be to replace a 

binary vector variable with a continuous matrix variable, 

The General Formula of K-cluster Problem and Bound Procedure 

Problem with K-Cluster entails locating a subgraph with the heaviest weight and exactly k nodes (1 

< k < n − 1) when there is an edge weighted graph with n vertices. This is a classic combinatorial 

optimization problem, also known as the When all edge weights are equal to 1, the following 

problems arise: (heaviest k-subgraph problem), (k-dispersion problem), (k-defence-sum problem), 

and (densest subgraph problem). The k-cluster problem entails evaluating a subset S ⊆ V of 𝑘 

vertices such that the number of the weights of the edges between vertices in S is maximized 

according to given a graph G = (V,E). Letting n = |V | denote the number of vertices, and 𝑤𝑖𝑗 denote 

the edge weight for 𝑖𝑗 ∈  𝐸 and 𝑤𝑖𝑗 = 0 for 𝑖𝑗 ∉  𝐸 the problem can be modeled as the optimization 

problem: 

Max 
1

2
 𝑍𝑇𝑊𝑧 

S.T 𝑒⊤𝑧 =  𝑘 

𝑧 ∈  {0, 1}𝑛 , 𝑘 ∈  𝑍. 

The Penalty and Augmented Lagrangian Methods 

The goal of an optimization issue is to maximize or minimize a function while taking certain 

limitations into account. The overall optimization issue provided by [12, 13,]:  

Min f(x) 

S.T x ∈ X. 

The function f is defined from a convex set 𝑋 ⊆  𝑅𝑛 into R. A point 𝑥∗  ∈  𝑋 is a local solution of 

problem (4.1) if there exists a neighborhood B(𝑥∗, t) such that 𝑓(𝑥∗)  ≤  𝑓(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈
 𝐵(𝑥∗, 𝑡)  ∩  𝑋 = {𝑥 ∈  𝑋 | ∥ 𝑥 −  𝑥∗ ∥ ≤  𝑡} 

The basic penalty method and augmented Lagrangian method are summarized in 

Algorithms (1), (2) respectively. 
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Julia Language (JuliaBox) 

A dynamic, high-performance, high-level programming language is Julia. Although it can be used 

to create any application because it is a general-purpose language. A type system with parametric 

polymorphism in a dynamic programming language with multiple dispatches as its primary 

programming paradigm is one of Julia's design's distinguishing features. In order to develop a free 

language that was both high-level and quick, Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and 

Alan Edelman founded Julia in 2009. The team debuted a website on February 14, 2012, along with 

a blog post describing the goal of the language [2]. Julia is used by setting up a user account, 

signing into the website, and working on it while connected to the internet. It is possible to work on 

it without access to the internet, but only if the necessary packages are present. 

Numerical Results 

In this section, we’ll go through our results and evaluate the performance of the suggested 

development method. These tests were performed using a particular graph that was imported from 

the Biq Mac library. [8]. There are 50 nodes connected by 1214 edges in these 106 graphs as shown 

in Figures (6) respectively, as well as on the other types of graphs. we implemented the Augmented 

Lagrangian, Penalty and Hybrid methods for solving the semidefinte programming. This section's 

figures display the quantity of function calls made by the different techniques of solving K-

CLUSTER PROBLEM. The exact solution to our problem was given by SB and CSDP solvers [11] 

. Types graphs of various sizes were tested, and the results were extracted and displayed in this part. 

Finally, our results depend on a new approach by using backtracking line search instead of huge line 

search. 
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Figure 6: design the graph from Big Mac library and contain (50 vertices and 1214 edges) 

Elementary Numerical Results of Graphs g05-60 (Function Calls ) 

In order to achieve the idea accurately and to obtain results through which it is possible to infer the 

fastest method of convergence to the bound of optimal solution, we’ve picked various problems 

(g05-60) from the Big Mac Library to work on as shown in Table (1) and the graphs in Figure (6). 

In fact, these problems contain 60 nods and 885 edges. Also, we used three approaches in these 

tests: Penalty method, Augumented Lagrangian method and Hybrid method. It was shown that the 

Augmented Lagrangian Method is more accurate than the method of Penalty Method, which means 

that the Augmented lagrangian method is the best, therefore it is provide the optimal solution of this 

cluster. 

Our results 

Problem PENfcalls AUG.fcalls Hybrid fcalls 

g05 60.0 

g05 60.1 

g05 60.2 

g05 60.3 

g05 60.4 

g05 60.5 

g05 60.6 

g05 60.7 

g05 60.8 

g05 60.9 

753 

851 

409 

890 

491 

873 

503 

789 

444 

517 

587 

443 

252 

851 

351 

321 

236 

514 

231 

270 

531 

493 

224 

523 

463 

444 

261 

481 

213 

394 

Total winner fcalls 0 5 5 
 

Table 1: Numerical results of graphs (g05-60) 
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Figure 6: Convergence of the optimal solution between the methods 

Conclusions 

The peaper goals and objectives were met, and the following information was gleaned: 

1. Development anew relaxation of the feasible region to provide the Augmented lagrangian 

method based on penalty method. 

2. The outcomes showed that, in terms of meeting the goal bound, the Augmented Lagrangian 

Method was superior to the Penalty Method.  

3. The Hybrid method, which alternates between the penalty and inequality Augmented 

Lagrangian methods, is also put to the test. The results showed that the Hybrid approach 

outperformed the two alternatives separately. 

4. It has been proven that the K-CLUSTER combinatorial optimization problems is 

5. NP-Hardness problem in graph clustering with large scale of variables. 

6. A new algorithm has been developed by which the bound is improved and it works on NP-

Hardness problem. 

7. Develop theoretical convergence properties. 
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