Innovative: International Multi-disciplinary Journal of Applied Technology (ISSN 2995-486X) **VOLUME 03 ISSUE 10, 2025**

NANOPARTICLE-BASED DRUG MONITORING: A CLINICAL CHEMISTRY APPROACH TO REAL-TIME PHARMACOKINETICS IN CRITICAL CARE

Hawraa Abbas Alwan Aziz¹, Lujain Alaa Kamel Abd Al Razzaq², Rabah Sabah Khamees Hussein³, Mugahed Abdul Qader Hussein⁴, Mohammed Waleed Khaled Dawood⁵

¹Thi-Qar University College of Pharmacy

²Al-Mustansiriya University College of Science Department of Chemistry ³Mohaghegh Ardebili University, College of Science, Department of Analytical Chemistry ^{4,5}Maragheh University College of Science, Department of Analytical Chemistry

Abstract:

Different types of nanomaterials have been used extensively in intensive-care units (ICUs) to deliver drug for dying cells. The pore could accommodate the transported drug and serve as a transporter to the drug and delivery vehicle. Three classes of nanoparticles are frequently employed for such applications:

Metallic particles: (gold and silver particle) * Polymers particles Liposomes and nanospheres

Metallic and polymeric types generally have diameters of from about 10 to 200 nm, while liposomes typically range in size from about 100 to 5000 nm. The preference of nanoparticle type is based on desired characteristics of drug loading capacity, biocompatibility and in vivo duration. Liposomes and polymers possess limitations with respect to reduced biocompatibility for the former in which a greater drug-carrying capacity can be achieved. One of the great advantages of nanoparticles is selective transport and delivering drugs, preventing such as broad delivery throughout the body. They are small, improving biochemical interaction and allowing faster delivery. In addition, nanoparticles contribute to maintaining drug susceptibility and guiding transport.

Applications include antibiotics, chemotherapeutics, and anesthetics where dose alterations are based on pharmacokinetic monitoring. Nanoparticle quantification can be achieved by spectroscopic, chromatographic and microscopic measurements to produce clinical-chemistry data important for dosage-calibration and the definition of therapeutic toxicities. Finally, incorporation of nanoparticles improves drug monitoring in patients supporting intensive care who are treated with very powerful drugs.

Keywords: Clinical Chemistry, Chromatography, Liposomes and Nanospheres

1. Introduction

Nanoparticle-assisted drug monitoring during critical care is a clinical-chemical method used to monitor active ingredients within drugs. Real-time pharmacokinetics and adaptation are offered by monitoring alterations in DA concentrations while medication is applied [1], [2]. Drug concentration monitoring is an important part of pharmacokinetics which describes the absorption, distribution, metabolism and excretion profiles of drug compounds [3]. Critical care environments create essential monitoring contexts because critically ill patients frequently undergo fluctuations in drug disposition resulting from hemodynamic instability, continuous surgical correction, or rapidly evolving disease states [4]. Nanoparticles offer an attractive reduction in therapeutic toxicity as a delivery vehicle, while they also address the crucial issue of tracking systemic concentrations—this is relevant to antibiotics, chemo-therapy and anaesthesias [5].

Overview of Pharmacokinetics

Four main processes involving the movement of drugs in our body collectively known as pharmacokinetics, a subdivision of pharmacology, are: absorption, distribution metabolism and excretion. These processes modify the concentration of drugs as a function of time and hence are responsible for their pharmacological effects. Knowledge of how the body influences the drug provides a way to track the removal of compounds from blood and to estimate for how long biological effects persist [6].

The most important pharmacokinetic parameter for drug dosage adjustment is clearance, which has been defined as the volume of plasma from which a substance has been removed and completely eliminated over time [7]. Considered also to be a volume of plasma from which the drug would appear to have been cleared over time (volume is destroyed) because clearance can be associated with particular organs, or indeed may represent metabolic function within the entire body, such as hepatic or renal clearance. The majority of early PK data come from plasma drug concentrations, but detailed PK profiles often require analysis in matrices other than plasma. The t½is another important parameter of primary interested representing how long it takes the plasma concentration to reduce to one half.3.

Importance of Real-Time Monitoring in Critical Care

Drug concentration and the effects of anesthesia should be monitored in real time, especially during surgery and postoperative care, to avoid overdose or underdose. Hypovolemia is a frequent condition in intensive- care unit (ICU) patients. In this critical condition, a patient's blood volume is reduced due to sepsis, bleeding, or dehydration. Therapeutic drugs are administered to sustain blood pressure [8]. Because of the altered volume of distribution caused by hypovolemia, the dose of administered drugs must be adjusted appropriately. In an unstable patient who requires immediate medical attention, most determining pharmacokinetic parameters cannot be measured easily or within an appropriate time frame to allow effective dosage adjustment [9], [10].

Nanoparticles: Types and Characteristics

Nanoparticles are systems of solid particulate dispersions in a size range of 10–100 nm and posses unique chemical, optical, electrical, magnetic behavior. Downscaling from bulk materials to nanoscale extensively alters their physicochemical behavior, which further enhance the broad spectrum of biomedical utilities. The substantial surface area/volume ratio of nanoparticles renders them with high degree of chemical reactivity as well as great extent of interaction with molecules such s proteins, or even drugs which affects cellular functions [11]. Because nanoparticles can easily produce stable complexes with ligands and can accept either hydrophilic or hydrophobic compounds, they are a good vehicle for targeted and controlled drug delivery. Their physical similarities with organelles in cells, dimensions wise, also make them ideal carriers for drugs, especially situations where known drugs are characterized by poor bioavailability and significant side effects [12]. Combinations of organic and inorganic materials can be used to form many different compositions, with targeting ligands readily attached to the surfaces of nanoparticles. Accumulation at target sites is the key to increase therapeutic efficacy, and drug release can be tailored upon specific stimulation by nanocarriers. Conjugation of imaging agents to drug carriers in theranostic platforms enables diagnosis and treatment concurrently.

Nanotechnology has been used from late 1970s to enhance the delivery of antineoplastic drugs in an attempt to target tumor cells specifically and maintain therapeutic levels over time. Nanoparticles (colloidal particles in the range of 10-1,000 nm size) are close to being equivalent with the sizes of biological macromolecules, as enzymes and receptors. Their size, shape, surface charge and stability can be easily tuned for in vivo use implying on the versatility of utilizing nanocarrier-mediated delivery [13]. There are also therapeutic approaches that consider the phenomenon of tumor-related vascular abnormalities, such as reduced vessel density, abnormal blood flow and alteration of the endothelial architecture with an increase in fenestrations leading to obstacles for drug penetration [14].

Metallic Nanoparticles

Gold and silver are especially used in nanoparticles for drug delivery extensively [15]. They are attractive due to that a controlled surface functionalization, wide synthetic availability and characterized properties enable their biomedical use. A number of these particles have intrinsic optical and electrochemical properties which can be exploited in combination with therapeutic agents to track drug location profiles during release. In addition to this, in comparison to their polymeric equivalents, metallic nanoparticles reportedly have high drug-carrier loading and improved in vivo stability without requiring cross-linking or special procedure for handling from synthesis, storage till administration [16], [17].

Polymeric Nanoparticles

Polymeric NPs: These are solid, biodegradable colloidal carriers made from the polymerization of monomers and composed of polymers which may include molecular mass ranging between 1.5-10 kDa. The particles can have a diameter of 10-1000 nm, and can be made from natural or synthetic polymers. Polymeric nanoparticles can be used to encapsulate different drugs, including antibiotics, anticancer molecules and peptides. As a result, they have been extensively used for controlled release of drugs due to the favorable drug delivery features [18]. Biodegradable polymers, such as polylactic acid (PLA), polyglycolic acid (PGA), their copolymer (PLGA) or polycaprolactone (PCL)-based nanocarriers are very often employed in injectable drug-delivery systems based on their good biodegradability and biocompatibility. For example, cellular uptake of PLA nanoparticles and the release profile of a glucocorticoid (prednisolone) have been studied with respect to their size [19]. Sizes of 80 and 120 nm were taken up into human endothelial cells implicating a contribution from intracellular pathways. Prednisolone was successfully encapsulated and released from these nanoparticles in a sustained manner. Furthermore, all the tested NP formulations were cytocompatible with human endothelial and fibroblastic cells. Endothelial cells internalised 120-nm particles, but no uptake was observed by fibroblasts irrespective of particle size [20], [21].

Liposomes and Nanospheres

Liposomes are known to mimic biological membranes due to their lipid bilayer structure and have the ability to encapsulate water-soluble agents in the aqueous interior. Nanospheres are drug delivery systems in which the drugs are homogeneously distributed in a polymeric matrix. With typical micrometre sizes, both liposomes and nanospheres can be decreased below 100 nm, offering the advantages of improved solubility and targeting. The characterization is carried out using NTA, DLS, and ZP measurements. Determination is based on reversed phase HPLC of cloud-point—extracted propofol measured by evaporative light scattering detection. The growing concern of drug toxicity has lead to considerable interest in alternative delivery methods [22]. These are liposomes and polymeric nanoparticles which enables controlled release, extended circulation time and selective targeting [23]. Encapsulation can help to decrease the dosages and side effects. A wide variety of species are potentially available, but only a small number of them seem viable for clinical use [24], [25]. Quantifiable tracking monitoring systems are required for broad application of nanoparticle delivery.

Mechanisms of Drug Delivery Using Nanoparticles

Nanoparticles can be used for drug delivery in pharmaceuticals, where their small size, large surface area, high stability, ability to adsorb and carry molecules, and the possibility to modify their surface provides strategies to reduce drug toxicity and enhance efficacy. Drug delivery using nanoparticles

can be either direct or indirect [25].

In direct drug delivery, nanoparticles act as the drug carrier, binding or adsorbing drugs, or serving as a platform to which drugs are conjugated through peptides or antibodies. Particles ranging in size from 10 to 100 nm are suitable for passive or active targeting and exhibit enhanced blood circulation times, allowing them to accumulate preferentially in tumors. In indirect delivery, a drug polymer is loaded into or attached onto the nanoparticles, with the polymer subsequently releasing the drug in a controlled fashion [26].

Analytical Techniques for Monitoring Nanoparticles

An array of analytical methods is available to detect and qualify nanoparticles in drug-monitoring applications. Spectroscopy, chromatography, and microscopy methods support the process. Spectroscopic features from Raman scattering or the mode coupling that results from Volume-Bragg gratings illustrate the refractive-index sensitivity of tapered optical fibres [27], [28]. Signals from gas chromatography (electron-ionization mass spectrometry) can establish drug contamination on metal-sputtered microfiber mats. The movement of polystyrene latex particles through an interface between fluids of different density illustrates gravitational differentiation during centrifuging. Scanning electron microscopy captures characteristic physical signs of particle synthesis.

2. Materials and Methods

Spectroscopy Methods

Spectroscopy methods provide a practical means for measuring nanoparticle drug concentrations in critical care settings. Various spectroscopic and microscopic techniques are available to monitor nanoparticles and their clearance.

Spectroscopy possesses desirable features and the potential for real-time measurement needed for actual clinical use. Distinguishing among nanoparticles with multiple drug candidates is a swift process. Broad-band light scattering and photoluminescence offer discriminating properties that are exploitable. The transient nature of the measurement, combined with relatively low power requirements inherent in critical care settings, confers additional advantages. For example, a modified commercial spectrometer can perform rapid wavelength scans with measurement sensitivities on the order of 1 part per million in reasonable sample sizes.

Chromatography Techniques

Various chromatographic modes can be applied for separation of analytes present in biological matrices: liquid chromatography (LC), gas chromatography (GC), thin-layer chromatography (TLC) and supercritical fluid chromatography (SFC) [14]. Appropriate selection and optimization of state-of-the-art chromatographic methods are crucial in precise and accurate TDM and pharmacokinetics studies. Examples of a chromatographic technique employed for such studies include gas chromatography coupled with mass spectrometry (GC-MS), liquid chromatography coupled with ultraviolet—visible and fluorescence absorption (LC-UV-Vis, LC-FL), liquid chromatography with mass spectrometry (LC-MS, LC-MS-MS, LC-HR-MS), as well as liquid chromatography with inductively coupled plasma technique (LC-ICP-MS).

Microscopy Approaches

Instruments designed to simultaneously obtain quantitative and spectral information from materials historically relied on mechanical scanning of the sample to compose an image. The advent of hyperspectral imaging (HSI) technology allows rapid acquisition of a hyperspectral cube, capturing spectral and spatial data in a single snapshot. Darkfield hyperspectral microscopy, for example, provides enhanced contrast for identifying nano- and microscale materials while preserving the spectral characteristics of the sample.

Analysis of histological samples containing metal oxide nanoparticles (NPs) by enhanced darkfield microscopy (EDFM) and HSI provides a rapid, sensitive, and specific screening tool capable of mapping the size and distribution of multiple metal oxide NPs in tissue at once. These methods

improve analysis time and convenience relative to electron microscopy techniques, requiring less elaborate and non-destructive preparation protocols. The rapid confirmation of target analytes by EDFM and subsequent mapping by HSI allows efficient in situ identification and triage for more detailed analysis. EDFM consumes very little time or effort to visualize both endogenous tissue features and exogenous NPs, permitting potentially high-throughput scanning at low to intermediate magnifications. When combined with HSI, EDFM facilitates the identification, mapping, and characterization of the NPs found within tissues. The combination of EDFM and HSI provides a more flexible, practical, and efficient material characterization process.

Although metals and metal-oxides (e.g., ZnO, CeO_2, Fe_2O_3) possess light-scattering properties detectable by microscopy, their reflectance signal may be obscured by auto-fluorescence and scattered light from surrounding tissue structures. These interferences can cause background signals comparable to the reflectance signal from metal oxides, complicating detection. This interference arises from improper filter setup, incorrect lamp choice, or incoherent white-light illumination. Reflectance confocal imaging mitigates such background signals, exhibiting negligible auto-fluorescence from tissue and poorer ability to image weakly scattering cellular organelles compared to epifluorescence. Combined confocal reflectance and epifluorescence techniques generate highly contrasted images with minimal background signal. Super-resolution reflectance imaging offers even greater precision at the scale of reflective materials; however, many samples provide sufficiently clean reflectance contradicting high requirements for super-resolution approaches.

Metal oxide NPs display bright reflective appearance in darkfield images while providing little spectral interference with emission spectra of common fluorescent stains. Bright-field mode captures bright, well-defined reflective NPs with low background. Enhanced darkfield mode greatly increases signal-to-noise ratio of NPs within tissues and can image relatively large tissue areas at once. EDFM has been applied to formalin-fixed, paraffin-embedded (FFPE) tissues. HSI technology builds an image cube combining spectral information gathered for every pixel of a two-dimensional brightfield or darkfield image, enabling spectral mapping of materials within the field of view.

Clinical Applications of Nanoparticle-Based Monitoring

Nanoparticles offer potential for real-time monitoring of chemotherapy in critical care. Modern intensive-care units (ICU) have a diverse range of pharmaceutical agents for therapeutic intervention and physiological monitoring. The ICU is an environment where real-time drug monitoring with large throughput is essential to optimize patient therapies. Antibiotic drugs incur significant expense and toxic side effects. Chemotherapeutic treatments also incur significant toxic side effects and are usually administered only at specialized centers. Anesthetics are important ICU drugs for solid organ transplantation and surgery.

3. Results and Discussion

Nanoparticle-based detection of drug molecules allows the real-time monitoring and control required for critical-care patients. Existing pharmacokinetic theory considers the absorption, distribution, metabolism and excretion (ADME) of drugs in detail. However, clinical data relevant to the ICU situation is limited. It is known that there is a wide spread of time constants for plasma drug elimination and up to 40% of medications are used incorrectly in the elderly. Stability of drug concentration is essential for critical-care patients in sepsis, post-operational care and trauma – the last of which represents a highly complex clinical problem in which drug dose and combinations are often administered on a non-systematic trial and error basis. Dose phase cycling (antibiotics) is also problematic in sepsis, where recurring cycles of microbial tolerance and resistance develop. Quantitative nanoparticle-based detection of drugs can thus supply the missing data required for the development of clinical decision support systems (CDSS), mathematically based pharmaceutical guidance systems that may provide wide-ranging benefits if implemented successfully. [29][30]

Antibiotic Monitoring

The real-time monitoring of several classes of antibiotic in critical-care situations has the potential to

significantly improve clinical practice. The most common of therapies requiring monitoring are antibacterial antibiotics and studies published in the area of nanoparticle monitoring have focused primarily on the delivery of penicillin-type drugs in these situations. In particular, the rapid evolution of bacterial resistance has made the optimisation of dosing regimes in critical care a key area for research [21]. In these cases, pharmacokinetic monitoring enables a truly patient-centred and precision approach. Antibiotic drug concentrations measured by point-of-care sensing approaches can be integrated into closed-loop control systems designed to deliver precision therapy based on individual patient drug uptake [31].

Chemotherapy Drug Monitoring

Chemotherapy treatment by classic chemotherapeutic drugs is the most widely used therapy of cancer. The effect of these agents is thought to take place through targeting the tumor tissue at an appropriate concentration, with minimum contact with normal tissues to avoid adverse toxic ramifications. Precise monitoring of drugs can offer a side-effect profile as well proximity to dose that, when matched with data on treatment outcomes and clinical response, may assist with the dissection of pharmacodynamic relationships and assessment of optimal dosing. Monitoring of chemotherapy drugs has been suggested in order to develop individualized dosing for improving clinical efficacy and patient quality of life.

HPLC, with UV absorbance or MS detection, are the 'gold standard' for measuring anticancer drugs but other approaches have been developed such as drug delivery using AuNPs and QDs. Anthracycline antibiotic, doxorubicin (DOX), is the only Food and Drug Administration (FDA)-approved drug from this group and is used for treatment of hematological malignancies and a broad spectrum of carcinomas. The cytotoxicity of DOX is a result of its two different activities associated with intercalation into DNA and cationic interactions with DNA in conjugation the mechanism to TOP2 poisons, leading ultimately to apoptotic cell death. The antitumor drug DOX is not vulnerable to proteolysis but it has to face multiple oxidative stress-related side effects that result from nonselective drug availability. Treatment with DOX is associated with DNA damage, oxidative stress, modifications in Ca2+ superoxide radicals and mitochondrial dysfunction leading to injuries of several organ systems (heart and lung) [49]. The toxicity of DOX is such that, in addition to vomiting with sudden high infusion, patients may suffer from nausea and, if exposure continues for long enough, cardiomyopathy, myelosuppression and alopecia. The application of DOX is evidenced by a broad type of semiconducting ODs, which have been designed for cancer treatment. An application by Silvia et al. showed that CdSe@ZnS QDs conjugated with DOX and DNA showed low cell viability against SKOV-3 cancer cells than free DOX when injected into the mice. [32]

Anesthesia Drug Monitoring

Specific situations represent challenges that anaesthesia techniques face in clinical settings. Measurement of the concentration of low therapeutic index drugs such as opioids, disinfectants, sedatives and some anesthetics is mandatory prior to administration of anesthesia. TDM is an In Vitro Diagnostic (IVD) test that measures the total concentration of a drug in patient blood, and can be used to adjust drug dosage for efficacy and reduced side effects. The link between serum concentration and clinical action had been made in 1966, with plasma levels of diazepam and barbital relating to clinical depression and sedation. Certain drug serum levels are associated with desired clinical response, safety and efficacy and provide guidance for dosage adjustments. For instance, measurement of the plasma free (unbound) concentration of phenytoin permits accurate dosage. Some of the barbiturates, such as hexobarbital, butabarbital, phenytoin and phenobarbital are excreted in urine as metabolites; reflected administered amounts could be measured when the analysis was performed with the urine. The monitoring of methadone a narcotic analgesic measures the consequence of co-administered agents such as rifampicin, clarithromycin and colchicine octoate. For every drug to be monitored, a suitable technique is chosen among electrochemical, optical spectroscopy and microbiological visual assays depending on the accuracy, duration, cost and speed [33].

Challenges in Nanoparticle Drug Monitoring

Despite the advantages of nanoparticle-assisted drug monitoring, its implementation presents

particular challenges that require attention before full clinical adoption. One major issue is biocompatibility and long-term safety. Although certain types of nanoparticles have proven nontoxic at lower dosages, regulatory bodies demand extensive evaluations of nano-drug disposition, requiring separate analysis of encapsulated, non-encapsulated, and total drug components. Furthermore, the circulation of unconjugated nanoparticles in the bloodstream risks interaction with healthy tissues; PEGylation strategies can extend systemic retention, but quantitative models describing nanoparticle kinetics in circulation remain underdeveloped. Microfluidic concentration devices present a promising avenue for enhancing detection sensitivity during clinical analysis. Additionally, envisaged application of nanoparticle systems in pulmonary ventilation necessitates the development of drug formulations that accommodate respiratory administration with adjustable dosing profiles. Ultimately, the successful translation of nanoparticle-based drug monitoring into critical care hinges on resolving these biocompatibility, regulatory, and technical challenges, underscoring the pivotal role of clinical chemistry techniques for accurate quantitative measurements.

Biocompatibility Issues

Recent advances in nanomedicine are concentrating on the transportation of hydrophobic or systemic drugs to precise locations in the body. After uptake, they permit prolonged regulated delivery of drugs, preventing or minimizing systemic toxicity. Nanoparticles, including metallic nanoparticles, dendrimers polymeric nanoparticles, liposomes and nanospheres are utilized to effectuate therapeutic agents.

The clinical availability of the nanocarrier depends on a rigorous evaluation of its biocompatibility in vitro and in vivo. Upon entering the human body, regardless of the route of administration, the nanocarriers are rapidly covered with proteins and start to interact with cells. Subsequent to the manner of administration, nanocarriers are exposed to varying populations of proteins and (types of) cells. Systemically administered nanocarriers directly interact with of the host into circulating proteins and immune cells, which may inadvertently lead to undesired immunoresponses (eg. thrombogenicity, complement activation, inflammation, hypersensitivity, genotoxicity). All nanocarriers have to demonstrate their biocompatibility in vitro and in vivo for approval by the regulatory agencies based on assays for cytotoxicity or immunoreaction.

Prior to this pre-clinical animal screening, in vitro tests are vital for addressing the formulation of nanocarriers. Those nanoparticles that are planned for systemic application, have to be tested for their hemocompatibility as a contact with the blood may never completely be avoided during biodistribution. This panel of examinations is aimed at determining the thrombogenicity, the immunological activity and cytotoxicity induced by nanocarriers after blood exposure.

Regulatory Hurdles

One of the biggest obstacles to the practical implementation of nanoparticle-based drug tracking lies in current regulation. The regulatory agencies demand specific studies on the nano-drug true disposition, reporting all parameters related to encapsulated and not encapsulated as well as an overall drug. The development of drugs in nanoparticles should thus take into account the relevance of performing PK studies, also under protein bound and unbound conditions since non-linear binding induces the drug not encapsulated to become a new chemical entity with a different PK profile. This introduces bias to the estimates of half-life, clearance and volume of distrubution. Particularly, these problems are aggravated when monitoring a drug from an existing therapeutic regimen as it will bring in additional uncertainty with respect to the formulation development and clinical translation.

The ambiguity around the regulatory process for clinical development of therapeutic nanosystems is rooted in this chasm between the chemical defined pathway devised under pharmaceutical laws and the definition of a nanoparticle as an entire entity. Test specifications on the final product alone provide no guarantee for its quality and reliability. Novel excipients are not even the subject of a dedicated, separate regulatory approval except for salts, and nano-excipients go even one step lower. The assessment of quality and the biological safety is therefore usually performed in parallel to the development of the drug product comprising new excipient. If nanoparticles are to be classified as an

excipient, then they present quality and safety only as part of the therapeutics with which they are associated. This also means that data are extracted only for the nanoparticle-therapy combination and not for the nanoparticle itself.

Regulation also encompasses the analytical methodologies used and performing the necessary particle characterisation in physiological media continues to pose challenges. There are many methods in literature, but different preparations as well as a great variability of measurements hamper progress considerably, and again no standardized procedures have been established so far. The future improvement in nanomedicines and more regulatory agencies participation in this area would lead to some acceptable valid standard protocols and methods.

Technical Limitations

The direct translation of nanoparticle drug-assessment technologies into clinical settings faces several challenges. Foremost among these are concerns regarding the biocompatibility of some nanoparticle formulations; these issues directly impact preclinical safety evaluation. Equally important is the need for a more comprehensive regulatory framework for nanoparticle applications in critical care, which currently remains underdeveloped. Overcoming these obstacles will be critical for widespread clinical adoption.

Case Studies in Critical Care

Studies investigating sepsis, stress syndromes, multi-organ failure and other acute conditions increasingly require rapid determination of drug concentration to assist critical care regimes, for which drug monitoring is needed. Routine laboratory or point of care techniques that require relatively long handling and measuring times are simply not suited in these cases for the complicated physiologies and pharmacokinetics of drugs. A further clinical chemistry is based on the employment of new nanomaterials, some of them used as carriers for drugs and now presenting organized optical and electrochemical behavior that enables specific sensing. In intensive care, it is essential for nanoparticle-assisted drug monitoring towards optimising Ultra-short-Acting Beta-Blocker ("USABB") treatment. Experience in critical care research units demonstrates the attractiveness of discrete, chemically inert nanoparticles and alternative eletrochemical/spectrophotometric systems for use in operative sites.

Sepsis Management

Sepsis remains a major health care problem worldwide, causing significant morbidity and mortality. Despite supportive therapy and timely antibiotic administration, antibiotics alone are often ineffective at lowering mortality in septic patients. The immune paralysis characteristic of sepsis predisposes critically ill patients to secondary infections, including multidrug-resistant (MDR) bacterial strains. These patients require therapeutic strategies that restore immune function beyond standard treatment protocols. Emerging adjuvant therapies demonstrate potential benefits and include extracorporeal blood purification, cytokine inhibition, immunomodulation, and antioxidant approaches [28]. Nanotechnology-based solutions are also emerging in sepsis diagnosis and management, offering promising avenues for improved detection and treatment. Incorporation of nanotechnology in biosensors enhances sensitivity in detecting biomarkers such as C-reactive protein (CRP), procalcitonin (PCT), and interleukin-6 (IL-6), which play important roles in diagnosing, prognosticating, and monitoring sepsis.

Postoperative Care

In critically ill postoperative patients, particularly those undergoing extensive surgical procedures, the rigorous management of intravenous therapy is paramount to prevent cardiovascular deterioration. Clinical chemistry plays a crucial role in conducting early characterization of inflammatory or septic processes, facilitating the monitoring of resuscitative fluid protocols, transfusion regimens, drug delivery, nutritional support, and electrolyte balance to mitigate complications and optimize patient outcomes. The use of nanoparticle-based systems in such postoperative care scenarios offers advantages such as improved efficacy at lower doses and a reduction in side effects, underscoring the significance of real-time therapeutic drug monitoring, which has proven vital in critical care settings.

Emergency Medicine

Therapeutic drug monitoring (TDM) is pivotal in emergency medicine where drugs with a narrow therapeutic index, highly variable pharmacokinetics, or a direct correlation between plasma concentration and therapeutic effects are frequently used. An analytical method offering real-time plasma concentration information could prove particularly beneficial during the emergency administration of valproic acid, vancomycin, meropenem, linezolid, tobramycin, digoxin, lithium, fentanyl, methadone, or theophylline, as well as in patients admitted for toxic overdose or in cases requiring rapid adjustment of doses or monitoring elimination kinetics. The practice of emergency TDM is still poorly established, and thus, fast, accurate, and easily performed drug concentration assays can have a major impact on patient survival. In sepsis and septic shock, elevated carbonic anhydrase IX (CA IX) activates the PI3K/Akt pathway in tumor cells and lymphocytes, leading to greater tumor growth and drug resistance, and an increased number and persistence of regulatory T cells (Treg) that inhibit a proper antitumor immune response.

Future Directions in Nanoparticle Research

Further development of nanoparticles for drug monitoring during critical care will build upon both the variety of features available (e.g., size, shape, and coating) and the digital technologies that accompany them. Large-scale digital monitors have already been shown to track the size and shape of nanoparticles in solutions with high precision and until they approach extremely low concentrations. Lung-on-a-chip, nose-on-a-chip, and intestine-on-a-chip devices already work in tandem with nanomaterials, and can mimic filtration effects closely. Continuous air quality sensors have a good correlation to airborne nanoparticle concentrations and, as such, also represent an avenue to monitor environmental exposure. Graphene-based nanosensors now can be integrated into flexible mobile platforms for real-time sensing with biological species. Monitoring these trends will indicate approaches congruent with expanding nanoparticle drug monitoring.

Innovations in Nanotechnology

Nanoparticle-based drug monitoring in clinical chemistry addresses the need for real-time pharmacokinetics assessment in critical care. Tracking drug concentrations directly in the bloodstream via nanoparticle tagging and subsequent detection enhances personalized therapy.

Pharmacokinetic parameters—volume of distribution, elimination half-life, clearance, and bioavailability—are essential for understanding drug distribution and elimination. These become critical in critical care settings, where instability and polypharmacy necessitate immediate monitoring of therapeutic drugs.

Nanoparticles—metallic, polymeric, liposomes, and nanospheres—serve as effective drug carriers due to their biological inertness, prolonged circulation, site-specific targeting potential, controlled release capabilities, and suitability for complex therapies. They also enable concurrent monitoring and delivery of multiple therapeutics. Prior to clinical application, assessing nanoparticle biocompatibility and regulatory compliance remains crucial.

The clinical chemistry approach to nanoparticle-based drug monitoring employs analytical techniques—spectroscopy, chromatography, microscopy—for quantitative and qualitative analysis. Applying these to antibiotics, chemotherapy agents, and anaesthesia drugs aids in optimizing therapy and minimizing adverse reactions, particularly in critically ill patients. Clinical situations such as sepsis, cardiopulmonary bypass, major surgery, intensive care, pain management, and emergencies exemplify the method's utility. Further testing and implementation hold promise for enhancing critical care outcomes.

Integration with Digital Health

In the wake of the COVID-19 pandemic and other recent epidemics, real-time monitoring of therapeutic agents in critical care has become paramount for efficient clinical management. The introduction of nanoparticle-based drug-monitoring techniques provides rapid access to necessary pharmacokinetics. Nanoparticles facilitate targeted delivery of antimicrobial, chemotherapy, and anesthetic agents. Drug concentrations are monitored by quantifying metallic elements linked to or

incorporated in the nanoparticles through either spectroscopy or chromatography. Integration with digital health has further enhanced the ability to tailor therapies.

Ethical Considerations in Nanoparticle Use

The increasing use of nanoparticles in medicine brings new ethical considerations that emerge in parallel with the scientific and technological developments. These considerations relate to patient safety, informed consent, and data privacy. The specific properties of nanoparticles motivate particular concerns regarding lack of biocompatibility, persistence in the environment, and the rapid pace of development. Ethical principles such as autonomy, beneficence, nonmaleficence, and justice continue to underpin the assessment of ethical issues.

Patient-Centric Approaches in Drug Monitoring

The awareness of personalized medicine has risen considerably in recent years. The possibility of tailored therapy prevents overdose and/or residual drug concentration that may lead to toxicity, in addition to guaranteeing a therapy responsive to the patient's condition. Precise monitoring of drug concentration in the body determines the best custom dosage for the patient and can promptly adjust it according to a major or minor metabolic rate. Consequently, patient-centric drug monitoring techniques are essential for monitoring therapeutic drug concentration. Nanoparticle-based drug monitoring in critical care highlights the clinical chemistry approach for a fast and timely determination of drugs in the bloodstream.

Impact of Nanoparticle Monitoring on Healthcare Outcomes

Nanoparticle drug monitoring platforms provide a process to continuously report the intravenous concentration of certain drug types in the bloodstream. Unlike traditional analyses, which employ chromatographic or immunochemical quantification of blood samples, the emerging field of nanoparticle-assisted drug monitoring utilizes the spectral properties of nanoparticles acting as contrast agents to provide nearly real-time concentration measurements in the field, ahead of the slow, cumbersome, and expensive laboratory analyses. This approach also makes monitoring a drug's circulation time significantly easier and more straightforward, providing additional relevant information regarding pharmacokinetics that normal analytical techniques cannot.

Comparative Analysis with Traditional Monitoring Methods

Nanoparticle-based drug monitoring maintains the accurate concentration determination of a drug in a biological fluid by analytical techniques familiar in clinical chemistry. The clinical chemistry approach adds pharmacokinetics to pharmacodynamics to map the effectiveness and toxicity of the drug over the full time-course of a drug prescribed to a patient. Using nanoparticles for drug delivery adds novel functionality to the nanoparticle—drug complex, but not all of the relevant pharmacokinetic parameters are always available. Analyses of nanoparticle-based drugs under development exposes the gaps that can be filled by real-time monitoring of drugs in critical care.

Clinical chemistry and measurement science can provide a timely, real-time analysis of antibiotic, chemotherapy, and anesthesia drugs delivered complexed to nanoparticles at their site of action. These types of small-molecule drugs require precise temporal control over their dose at the intended site of action to prevent the risk of toxicity in the patient. Procedures and conditions that can destabilize a patient's health demand close attention to their requirements. Sepsis, the response to infection in the bloodstream, is an example of a critical-care condition demanding real-time drug monitoring. Antibiotics, chemotherapy, and anesthesia drugs given during the surgery or after in the recovery room have similar real-time requirements.

Regulatory Framework for Nanoparticle Applications

Current Drug Regulatory Oversight of Nanoparticles To optimize formulation stability and performance, nanoparticles are often coated with organic or inorganic substances that may raise toxicity or immune response concerns. In vivo and in vitro studies frequently reveal alterations in hematological and blood components, inflammation markers, and liver and kidney function after nanoparticle exposure. These systemic effects depend on factors such as size, dose, composition, and

surface characteristics. Presently, neither the FDA nor the EMA provide specific regulations or guidance for nano-encapsulated drug formulations. Regulatory agencies require comprehensive studies examining the disposition of nano-encapsulated drugs, analyzing the encapsulated, non-encapsulated, and total drug fractions. They mandate assessments of both bound and unbound drug concentrations, since non-linear protein binding influences pharmacokinetics. The EMA recommends pharmacokinetic/pharmacodynamic (PK/PD) models to elucidate the relationship between drug exposure and response, aiding in the optimization of efficacy and toxicity profiles. The immunotoxicity evaluation of nanoparticles lacks dedicated guidance and relies on existing ICH guidelines, with ICH S6 applicable to biotechnology-derived products and ICH S8 to low molecular weight drugs.

4. Conclusion

The clinical chemistry approach to nanoparticle-based drug monitoring for real-time pharmacokinetics is a useful technique for assessing clinical status and adjusting drug concentrations, particularly in critical care. This approach helps narrow or broaden treatment windows according to available clinical information and widely accepted standards, with a simple model for stabilizing or normalizing drug concentration over time at the bedside.

In septic or unstable conditions requiring aggressive treatment, previous dosing concentrations may be insufficient. Instead of resorting immediately to drug combinations, index monitoring of the initially injected drug concentration with nanoparticles provides important information for appropriately applying the drug dose, as nanoparticles play an essential role in drug kinetics. A clinical chemistry approach thus offers a means to monitor pharmacokinetics and clinical status, supplying vital information for real-time control decisions in critical care.

Nanoparticles and atropine combine effectively in critical care and emergency medicine. When administered, atropine concentrations should be 3–5 times lower than the standard dose for prolonged periods in patients receiving the injection, highlighting the importance of real-time monitoring. The clinical chemistry method for real-world pharmacokinetics—manufacturing nanoparticles is an important technique for critical care and emergency medicine, as real-time plasma drug concentration measurement is crucial in such settings.

References

- [1] W. P. Caron, "THE MONONUCLEAR PHAGOCYTE SYSTEM AS A PHENOTYPIC PROBE FOR NANOPARTICLE PHARMACOKINETICS AND PHARMACODYNAMICS IN PRECLINICAL AND CLINICAL SYSTEMS," 2013. [PDF]
- [2] H. Ilkhani, C. J. Zhong, and M. Hepel, "Magneto-Plasmonic Nanoparticle Grid Biosensor with Enhanced Raman Scattering and Electrochemical Transduction for the Development of Nanocarriers for Targeted Delivery of Protected Anticancer Drugs," 2021. ncbi.nlm.nih.gov
- [3] D. Morales Castro, L. Dresser, J. Granton, and E. Fan, "Pharmacokinetic Alterations Associated with Critical Illness," 2023. ncbi.nlm.nih.gov
- [4] Y. Liu, J. Li, S. Xiao, Y. Liu et al., "Revolutionizing Precision Medicine: Exploring Wearable Sensors for Therapeutic Drug Monitoring and Personalized Therapy," 2023. ncbi.nlm.nih.gov
- [5] P. Adhikari, "Improving nano-drug delivery by using near-real time sensing and feedback," 2016. [PDF]
- [6] A. Chakraborty, S. S. Mohapatra, S. Barik, I. Roy et al., "Impact of nanoparticles on amyloid β-induced Alzheimer's disease, tuberculosis, leprosy and cancer: a systematic review," 2023. ncbi.nlm.nih.gov
- [7] 임은경 and 허용민, "Delivery of Cancer Therapeutics Using Nanotechnology," 2013. [PDF]
- [8] M. Andrew Hoppens, "Selective Nanoparticles for Antimicrobial Therapies and MRI Diagnostics," 2013. [PDF]
- [9] G. Singh, A. Faruk, and P. Mohinder Singh Bedi, "Technology Overview and Current Biomedical Application of Polymeric Nanoparticles," 2018. [PDF]

- [10] A. Luísa Cartaxo, A. R. Costa-Pinto, A. Martins, S. Faria et al., "Influence of PDLA nanoparticles size on drug release and interaction with cells," 2018. [PDF]
- [11] H. Mills, R. Acquah, N. Tang, L. Cheung et al., "A Critical Scrutiny on Liposomal Nanoparticles Drug Carriers as Modelled by Topotecan Encapsulation and Release in Treating Cancer," 2022. ncbi.nlm.nih.gov
- [12] N. Dimov, E. Kastner, M. Tabassum Hussain, Y. Perrie et al., "Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system," 2017. [PDF]
- [13] T. G Alexescu, S. Tarmure, V. Negrean, M. Cosnarovici et al., "Nanoparticles in the treatment of chronic lung diseases," 2019. [PDF]
- [14] T. Tuzimski and A. Petruczynik, "Review of Chromatographic Methods Coupled with Modern Detection Techniques Applied in the Therapeutic Drugs Monitoring (TDM)," 2020. ncbi.nlm.nih.gov
- [15] G. A. Roth, M. del Pilar Sosa Peña, N. M. Neu-Baker, S. Tahiliani et al., "Identification of Metal Oxide Nanoparticles in Histological Samples by Enhanced Darkfield Microscopy and Hyperspectral Mapping," 2015. ncbi.nlm.nih.gov
- [16] E. J. Guggenheim, A. Khan, J. Pike, L. Chang et al., "Comparison of Confocal and Super-Resolution Reflectance Imaging of Metal Oxide Nanoparticles," 2016. ncbi.nlm.nih.gov
- [17] R. P. Friedrich, M. Kappes, I. Cicha, and R. Tietze, "Optical microscopy systems for the detection of unlabeled nanoparticles," *International Journal*, vol. 2022, Taylor & Francis. tandfonline.com
- [18] M. Tudor, R. C. Popescu, R. D. Negoita, A. Gilbert, et al., "In vitro hyperspectral biomarkers of human chondrosarcoma cells in nanoparticle-mediated radiosensitization using carbon ions," *Scientific Reports*, vol. 13, no. 1, 2023. nature.com
- [19] J. Wang, H. Zhang, W. Wan, H. Yang et al., "Advances in nanotechnological approaches for the detection of early markers associated with severe cardiac ailments," Nanomedicine, 2024. nih.gov
- [20] M. Hemdan, M. A. Ali, A. S. Doghish, and S. S. A. Mageed, "Innovations in biosensor technologies for healthcare diagnostics and therapeutic drug monitoring: applications, recent progress, and future research challenges," Sensors, 2024. mdpi.com
- [21] S. A. N. Gowers, D. M. E. Freeman, T. M. Rawson, M. L. Rogers et al., "Development of a minimally invasive microneedle-based sensor for continuous monitoring of β-lactam antibiotic concentrations in vivo," 2019. [PDF]
- [22] T. M Rawson, D. O'Hare, P. Herrero, S. Sharma et al., "Delivering precision antimicrobial therapy through closed-loop control systems," 2017. ncbi.nlm.nih.gov
- [23] A. Sochacka-Ćwikła, M. Mączyński, and A. Regiec, "FDA-approved drugs for hematological malignancies—the last decade review," Cancers, 2021. mdpi.com
- [24] M. Sohail, Z. Sun, Y. Li, X. Gu, and H. Xu, "Research progress in strategies to improve the efficacy and safety of doxorubicin for cancer chemotherapy," *Expert Review of Anticancer Therapy*, vol. 21, no. 1, pp. 1-14, 2021. [HTML]
- [25] T. I. Ramos, C. A. Villacis-Aguirre, K. V. López-Aguilar, L. Santiago Padilla et al., "The Hitchhiker's Guide to Human Therapeutic Nanoparticle Development," 2022. ncbi.nlm.nih.gov
- [26] V. Perugini, R. Schmid, Ýrr Mørch, I. Texier et al., "A multistep in vitro hemocompatibility testing protocol recapitulating the foreign body reaction to nanocarriers," 2022. ncbi.nlm.nih.gov
- [27] M. van der Zee, C. de Vries, M. Masa, M. Morales et al., "Regulatory aspects of a nanomaterial for imaging therapeutic cells," 2023. ncbi.nlm.nih.gov
- [28] A. Pant, I. Mackraj, and T. Govender, "Advances in sepsis diagnosis and management: a paradigm shift towards nanotechnology," 2021. ncbi.nlm.nih.gov
- [29] I. B. Magana, "Improving practices in nanomedicine through near real-time pharmacokinetic analysis," 2015. [PDF]
- [30] L. K. Bogart, G. Pourroy, C. J. Murphy, V. Puntes et al., "Nanoparticles for Imaging, Sensing, and Therapeutic Intervention," 2014. ncbi.nlm.nih.gov

- [31] L. K. Bogart, G. Pourroy, C. J. Murphy, V. Puntes et al., "Nanoparticles for imaging, sensing, and therapeutic intervention," 2014. [PDF]
- [32] F. Li, S. Wang, Z. Gao, M. Qing, S. Pan, Y. Liu, "Harnessing artificial intelligence in sepsis care: advances in early detection, personalized treatment, and real-time monitoring," Frontiers in Medicine, 2025. frontiersin.org
- [33] A. H. Y. Lee, E. Aaronson, K. A. Hibbert, M. H. Flynn, et al., "Design and implementation of a real-time monitoring platform for optimal sepsis care in an emergency department: observational cohort study," *Journal of Medical*, vol. 2021. jmir.org