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Abstract:  

 

Colorectal cancer (CRC) is the second most common cause of cancer-related death in the 
world, and early detection of adenomatous polyps with colonoscopy is important because it 
can prevent CRC. Nonetheless, traditional colonoscopy is still operator-dependent and with 
lesion-miss rates of up to 25% for small or flat lesions. Over the past decade, automated polyp 
detection and segmentation have come a long way with deep learning. CNNs like U-Net, 
UNet++ and ResUNet++ set strong baselines, however their low receptive field bound 
hindered generalization. More recently, vision transformers (ViTs) and hybrid CNN–
transformer architectures have achieved state-of-the-art results by modeling long-range 
dependencies and incorporating global context. This systematic review examines more than 
50 studies as the representative one available between 2015 and 2025, with specific attention 
to the results on Kvasir-SEG, CVC-ClinicDB, and ETIS-Larib benchmarks. Experiments 
demonstrate that while NFL-CNNs reach Dice scores of 0.85–0.90 on easier datasets, ViTs and 
hybrids almost always outperform motors, with the best models reaching 0.94 (NA-
SegFormer) on Kvasir-SEG and 0.81 over ETIS. Our results illustrate the disruptive nature of 
attention-based approaches, closer to what was desired by clinical colleagues, and signal 
some of the stubborn open challenges relating to dataset availability, practical computational 
cost and high-quality clinical evidence. Advances in the future will likely center around the 
development of lightweight understandable and generalisable AI systems designed to provide 
real-time, clinically reliable polyp detection. 
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1. Introduction 

Colorectal cancer (CRC) is still one of the most significant global health burdens, being the third 

prevalent malignancies and the second cause of cancer-related death throughout the world [1]. The 

adenoma–carcinoma sequence is a model that delineates the stepwise transition from normal colonic 

mucosa to malignant adenocarcinoma via intermediate adenomatous polyps [2]. For example, 

removal of these polyps when they are detected at colonoscopy can reduce to a large extent the 

incidence and mortality from CRC. However, clinical efficacy of colonoscopy varies markedly 

according to the endoscopist. Small, flat or sessile lesions may be missed - with reported miss rates 

of 20-25% in routine practice [3]. Such variability highlights the dire necessity of developing reliable 

CADe and computer-aided diagnosis (CADx) systems to improve diagnostic sensitivity, decrease 

inter-observer variability, and ultimately achieve improved clinical outcomes. 

Deep learning has become the backbone of medical image analysis over the past decade. Early 

successes of convolutional neural networks (CNNs) have been marked by architectures such as U-

Net [6], ResUNet++ [4], PraNet, MSRF-Net and ColonSegNet, which showed strong segmentation 

on benchmark datasets Kvasir-seg  and CVC-ClinicDB [5]. In general, these models have DSC 

values between 0.80–0.90 showing clinically significant improvements. In the meantime, CNNs 

utilize local receptive fields and hierarchical feature extraction but they have difficulty in capturing 

long-range dependencies, generalization across imaging protocols, and small training samples size 

prevalent in medical imaging [6]. 

Attention-augmented CNNs were proposed to alleviate these problems. Models like SANet, SRaNet 

& SR- AttNet entails with reverse or saliency based attention mechanisms for improved boundary 

detection and highlighting clinical features. These resulting designs were able to accuracies, as 

determined by DSC, typically surpassing 0.90 on benchmark datasets. However, convolutional 

backbones used in their designs limited its capacity to obtain global extreme semantic information. 

The Vision Transformer (ViT) introduced in [Dosovitskiy \etal. in 2020 [7] had a revolutionary impact 

on computer vision with direct consequence to endoscopic imaging. Transformers Unlike CNNs, 

transformers decompose input images into patches and utilize self-attention mechanisms to capture 

local as well as global dependencies. This was especially beneficial for polyp segmentation, in which 

lesions have varied sizes and morphologies, as well as anatomical locations. Reasonably, the 

Transformer architectures (e.g., Polyp-PVT [8], ColonFormer, NA-SegFormer ) have achieved the 

state-of-the-art performances and even outperformed CNNs by a few points in both Dice and IoU 

metrics. Notably, lightweight models such as SSFormer and Polyp-LVT have proven feasibility for 

real-time clinical application, with sensitivities of up to 96–98% using their original inference speed 
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[9]. 

Hybrid architectures taking advantage of the complementary properties between CNNs and 

transformers have gained interest. TransUNet [10] is an example of the latter approach, combining a 

CNN encoder with a transformer decoder. Other methods such as CTHP [24], M²UNet, and VMDU- 

Net [11] have more recently investigated the combination of CNN and transformer in different ways 

by multi-scale fusion or dual-encoder paradigms. These hybrid models always achieve better results 

than its CNN-based or transformer-based sibling, indicating further fusion may be the best solution 

for robust and general polyp segmentation. 

Our progress is impressive, but there are still a lot of issues to resolve. There is a paucity of 

diversity in datasets and computational complexity due to these models, along with a lack of expected 

clinical validation that can be extrapolated across populations [12]. Additionally, the CRC has 

increasingly relied on multimodality data integration that includes colonoscopy with histopathology, 

genomics/epigenics, and molecular biomarkers [13]. AI architectures, which integrate imaging and 

non-imaging modalities have the potential to increase sensitivity, specificity and eventually clinical 

trust. 

In this paper, we review the progress in deep learning techniques employed for polyp segmentation 

in endoscopy from traditional CNNs to attention-based cNNs, transformer models and hybrid 

architectures. We underline their strengths and weaknesses in comparison with respect to the 

benchmark, and also present novel trends potentially leading the next computer-aided systems, such 

multimodal fusion [14]. 

By now, deep learning has become the leading methodology in medical imaging analysis and a 

decade of great progress was achieved by the use of convolutional neural networks (CNNs) [47]. 

Architectures like U-Net, ResUNet, DeepLabV3+ and ColonSegNet have been extensively used for 

polyp detection and segmentation, demonstrating strong performance on several benchmark datasets 

including KVasir (Kvasir-SEG) and CVC-clinic databases. Reported Dice par factization accuracies 

are typically between 0.80 and 0.90, illustrating the clinical potential of CNNs [15], [16]. However, 

they have limitations such as shallow receptive fields that hamper capturing global context, overfitting 

when dealing with small-sized medical datasets and lack of robustness for generalization across 

various clinical setting, imaging protocol and polyp morphology [17]. 

The Vision Transformer (ViT) proposed Doso- vitskiy et al. in 2020 was an inflection point for 

computer vision. Unlike CNNs, ViTs split images into patches and use self-attention to incorporate 

local and global information. These properties are especially important in endoscopic imaging, for 

which polyps vary greatly in size, texture and anatomical location. Recent transformer-based models 

including Polyp-PVT, ColonFormer and NA-SegFormer have shown the state-of-the-art 

performance, usually outperforming those CNN-based models by several percentage points in terms 

of Dice and Intersection over Union (IoU) scores. In particular, light-weight ViTs (ViTLite) have 

shown promise for real-time clinical translation with detection sensitivities up to 96–98% while 

maintaining inference speed [18]. 

Hybrid models are another prom- ising direction. The TransUNet, which is an integration of a 

CNN based and a transformer based Decoder, demonstrates the promising potential of wood 

combining global attention with local feature Extractor (CNN) [19]. The combined approaches 

constantly achieve superior performances compared with their individual components, which 

indicates that we are heading towards integrated architectures in the future of medical image analysis. 

Nevertheless, there remain some problems. Most of models currently have been limited for either 

few annotated datasets with heterogeneity, computational burdens, or the lack of large-scale 

prospective clinical validation [20]. Furthermore, in clinical practice, imageacquisition quality for 

decision-making on CRC management does not only rely onendoscopic optical features. Multimodal 

data — that is, integrating colonoscopic imaging data with histopathology, genomics and liquid 
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biopsy biomarkers — increasingly inform the diagnostic and prognostic considerations of oncologists 

and pathologists. Novel AI constructs that combine imaging and non-imaging modalities, like the 

above image optimization platforms do, hold a frontier promise to enhance sensitivity and specificity 

as well as clinical trustworthiness. 

In this article, we provide a structured review to systematically summarize recent advances in 

CNN and transformer-based methods for polyp detection and segmentation in endoscopy. We 

illustrate their strengths, weaknesses, and clinical relevance by examining the transition from era of 

classical to recent CNN architectures into transformer/hybrid networks. Lastly, we also discuss the 

prospect of multimodal integration in AI as the future horizon point in endoscopic imaging but one 

that has a high probability to transform diagnostic and treatment decision-making into clinically 

actionable, patient centric approaches. 

The Purpose of the Study 

To the best of authors’ knowledge, there have been no systematic reviews on deep learning-based 

methods for detection and segmentation of colorectal polyps including CNNs, ViTs, and hybrid 

approaches. Prior work has focused primarily on CNN-based approaches [42], with less coverage of 

transformer-based methods. 

The objective of this article is, with the use best practice that defines behaviour under consideration, 

to provide a review of more than 50 case studies published from 2015 until 2025 in order: 

Record the development history of model architectures from CNNs, to ViTs and those hybrids. 

Compare benchmark performance on commonly used datasets, Kvasir-SEG, CVC-ClinicDB and 

ETIS-Larib [21]. 

Access computational efficiency, pay attention to FPS as a measure of clinical utility. 

The review further presents the recently emergent hybrid CNN–ViT and lightweight transformer 

models, discusses multimodal fusion with histopathology and genomics, as well as addresses major 

shortcomings and future prospects [22]. Through integration of these findings, the study provides a 

practical direction for researchers and clinicians to fill in the gap between research milestones and 

clinical operations. 

 

 

2. Materials and Methods 

Various data analysis methods—temporal profile, spatial distribution, and temperature homogeneity—

are used to evaluate the thermal profile induced by irradiance. The data acquisition and corresponding 

measurement equipment are interconnected so that the experimental setup is simple and easy to 

operate. In addition to orthogonal-type and bead-type temperature measurement technologies, the 

photothermally stimulated fluorescence imaging measurement technique can also be applied to 

determine the temperature distribution of samples.  

Biophysical Mechanisms of Laser-Tissue Interactions 

The interactions that occur in a laser–tissue contact have long been a topic of considerable interest to 

researchers. These interactions can be viewed from a variety of perspectives: chemical, mechanical, 

holographic. Nevertheless, the interactions are always linked to the thermal effects created by the 

absorption of energy in the tissues and the subsequent transfer of this energy to surrounding areas 

within the tissue. By exploring laser-induced heating, clinicians can better understand not only the 

procedure being performed, but also the underlying physiological effects of the modality. As laser 

therapy has evolved from continuous-wave to long pulsed, ultra-short to Q-switched, clinicians have 

adjusted treatment parameters and acquired new understanding of the thermal effects associated with 

the relatively new Q-switched Nd:YAG laser systems that can also be applied to contact treatments. 

The scientific literature contains references to numerous experiments conducted on the thermal effects 
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associated with laser-tissue interactions in general and with low-level laser therapy (LLLT) in 

particular. However, relatively few empirical studies have focused on measuring and quantifying the 

thermal effects of LLLT. Because LLLT wavelengths fall within the optical window of skin (600 nm 

to 1300 nm), tissue models that simulate skin have been widely used. Several studies have 

demonstrated that temperature rise during LLLT transmitted through tissue-photonics models is 

negligible when exposure is less than 2500 mJ/cm2. To better understand the controlled laboratory 

investigations documenting these effects, the mechanisms of heat transfer and temperature decay 

associated with laser-tissue interactions must be established and quantified. 

 

3. Results  

Evaluation Protocols and datasets 

Evaluation protocols are equally standardized. DSC and IoU, FPS are still the most popular metrics 

in reported segmentation performance. 

DSC describes how much the estimated segmentation mask matches with the ground truth. DSC is 

determined as follows: 

   𝐷𝑖𝑐𝑒(𝑋, 𝑌) =
2∩(𝑋∩𝑌)

|𝑋|+|𝑌|
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 

 

     where TP = true positives(correctly predicted), FP = false positives ( incorrectly labeled as 

  polyp), and FN = false negatives (missed polyp regions). 

 

Intersection over Union (IoU) is also utilized to compute overlaps, but it has stricter punishing toward 

FP and FN, which makes it a more stringent metric than Dice. IoU is computed as follows:  

  𝐼𝑜𝑈(𝑋, 𝑌) =
|𝑋∩𝑌|

|𝑋∪𝑌|
=

𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 

where TP = True Positive pixels, FP = False Positive pixels, FN = False Negative pixels 

FPS gives you the number of video frames the model can process in one second. It indicates if a 

model can be applied real-time in the context of colonoscopy. Low accuracy at a high FPS rate means 

that the model was too slow for clinical utility and high FPS with low accuracy results in unreliable 

readings. Ideal models should have a mixture of both (criticisers vs defectors) to operate during real-

time. 

Advances in this area have been stimulated by access to open benchmarks. Kvasir-SEG, CVC-

ClinicDB and ETIS-Larib are considered as state-of-the-art in standard segmentation challenge. 

Kvasir-SEG contains 1,000individual H&E images patched at the pixel level. The polyp is generally 

larger and more smooth, the image quality is also clearer with at most 1920×1072pixel. For this 

dataset, the polyp retrieval is easy and hence dice scores are mostly high. 

CVC-ClinicDB contains 612 labeled images of 31 sequences with lower resolution (384×288). The 

quality of images are good and is a benchmark. This is a popular benchmark for training/test split. 

ETIS-Larib Polyp DB(ETIS) containing 196 images of 34 sequences, which is more difficult than 

predecessors due to low contrast and small polyps. 

There are often multiple datasets on which researchers evaluate models as each dataset introduces a 

different degree of difficulty. On top of ClinicDB being an easy benchmark with well defined polyp 

borders, Kvasir-SEG provides diversity in shape and size. ETIS-LaribDB is more difficult than other 

databases (low contrast, poor illumination), that contribute to evaluate in a robust manner the 

generalization of the segmentation methods. 

Search Strategy and Study Selection 

A systematic literature search was performed to find studies about polyp detection and segmentation 

in endoscopic images. The electronic databases PubMed, Scopus, IEEE Xplore and arXiv were 

examined for publications between 2015 and 2025. The search was limited to research published in 

English and used Boolean expressions for searching using the keywords “polyp detection” 

AND“endoscopy” AND( "deep learning" OR "CNN" OR “Transformer"). 

Inclusion criteria required studies to: 

Concentrate on polyp detection or segmentation from a computer vision or AI perspective. 
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Report quantitative measures such as Dice Similarity Coefficient (DSC), Intersection over Union 

(IoU) or accuracy. 

Offer acceptances based on availability in peer-reviewed journals or reputable preprint servers. 

Exclusion criteria included: 

Studies unrelated to endoscopic imaging. 

Reviews, conference abstracts that did not have the full text or non-English articles. 

Papers without detail methodology or reference evaluation standards. 

Search strategy The selection process was conducted according to PRISMA guidelines. There were 

a total of 920 records returned by databases and 232 from arXiv, 180 from Medical Image Analysis, 

while other sources contributed with 508. Duplicate (n = 220), ineligible for automation flagging (n 

= 45), non-relevant reports (n = 22) being excluded, led to screening of 753 records. Of those, 678 

were removed for being irrelevant, and 75 articles remained for full-text review. After full eligibility 

assessment, 21 studies were excluded due to the unavailability of reference metrics (n = 13) or no 

segmentation assessment or no detailed information for methodology to be extracted (n = 5). After 

screening, 51 studies were included in the systematic review. The PRISMA: Preferred Reporting 

Items for Systematic Reviews and Meta-analyses flow of study selection is shown in 

The PRISMA flow diagram and number of included/excluded studies is shown in Figure 1: We 

identified a total of 51 studies meeting the inclusion criteria, published between 2015-2025. These 

experiments were a mix of CNN based, transformer based and hybrid architectures, with the mark-

ed preference for the transformer (and hybrid) designs over the last three years. Most models were 

Figure 1. PRISMA flow diagram for study selection. 
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evaluated on Kvasir-SEG, CVC-ClinicDB, and ETIS-LaribDB which are still the most common 

public datasets for colonoscopic polyp segmentation. 

The number of models that were published in each source (shown in Fig.2) reveals that arXiv achieved 

the highest popularity with n = 12, followed by Medical Image Analysis with n = 8 and Scientific 

Reports with n = 5. This tendency if a consequence of the rapid spread and follow-up publication to 

peer-reviewed journals [23]. 

4.1 Quantitative Comparison with State-of-the-arts on benchmark datasets 

Table 1 Performance comparison of common CNN-based models for polyp segmentation on 

benchmark datasets Kvasir-SEG, CVC-ClinicDB and ETIS-Larib. Early works like U-Netlay down 

backbone, having Dice scores of 81.5% (Kvasir-SEG), 87.6% (CVC-ClinicDB) and only 44.9% 

(ETIS-Larib) [24]. These findings emphasize the difficulties of general convolutional architectures in 

processing difficult datasets which are characterised by low contrast as well as small sized polyps. 

Subsequent refinements improved segmentation robustness. It is worthy noting that the method with 

nested skip connections (UNet++ ) yielded 84.5% Dice on Kvasir-SEG and 90.1% CVC-ClinicDB; 

however, ResUNet+ sheerly improved performance by incorporating residual and atrous 

convolutional modules reached up to 91.9% On CVC-ClinicDB. Specifically PraNet model was 

quite successful in the sense of its previous models, with Dice scores 89.9%, 92.3% and 64.7% on 

Kvasir-SEG, CVC-ClinicDB and ETIS-Larib respectively [24], indicating a remarkable progress 

towards detecting small and flat lesions for this case [36]. 

Subsequent CNN-based methods also focused on efficient computation in addition to accuracy. 

ColonSegNet could compete very well with low complexity, but HarDNet-MSEG [18] gave one of 

the best CNN results: it scored 91.0% (Kvasir-SEG), 93.2% (CVC-ClinicDB) and 73.3% (ETIS-

Larib). On average, the CNN-based methods demonstrate robust segmentation results on Kvasir-SEG 

and CVC-ClinicDB while obtaining poor performance on ETIS-Larib which implies that they are not 

well suited for generalization with respect to challenging imaging configurations. 

Model Ref Dataset Dice 

(%) 

IoU 

(%) 

U-Net (2015) [5] Kvasir-SEG 81.5 72.1 

  CVC-

ClinicDB 

87.6 80.0 

  ETIS-Larib 44.9 35.1 

UNet++ (2018) [7] Kvasir-SEG 84.5 76.2 

  CVC-

ClinicDB 

90.1 82.4 

  ETIS-Larib 50.1 40.5 

ResUNet++ (2019) [6],[1

3] 

Kvasir-SEG 87.5 79.2 

  CVC-

ClinicDB 

91.9 84.1 

  ETIS-Larib 56.2 44.9 

ColonSegNet (2021) [14] Kvasir-SEG 82.6          - 

PraNet (2020) [36] Kvasir-SEG 89.9 82.1 

  CVC-

ClinicDB 

92.3 84.7 

  ETIS-Larib 64.7 54.5 

MSRF-Net (2021) [37] Kvasir-SEG 88.3 80.4 

  CVC-

ClinicDB 

91.2 83.1 

http://www.multijournals.org/


14 | INNOVATIVE: INTERNATIONAL MULTI-DISCIPLINARY JOURNAL OF APPLIED TECHNOLOGY www.multijournals.org  

 

 

HarDNet-MSEG 

(2022) 

[18] Kvasir-SEG 91.0 82.5 

  CVC-

ClinicDB 

93.2 85.6 

  ETIS-Larib 73.3 62.1 

Table 1. Performance of CNN-based methods for colonoscopic polyp segmentation across 

benchmark datasets 

Performance of Transformer-Based and Hybrid Approaches 

This work showed that transformer-based and hybrid CNN–ViT models clearly outperform pure 

CNNs, specifically for dealing with variability in polyp sizes and shapes. As is evident from Table 2, 

TransUNet [25] and Swin-Unet were the initial hybrid architectures and reached Dice scores above 

90% on Kvasir-SEG and CVC-ClinicDB, while still reaching 74–76% on ETIS-Larib. These early 

hybrids were already among the top performing models on the challenging ETIS dataset. 

The second-generation transformer models for instance Polyp-PVT [26] and ColonFormer [27] were 

able to surpass a Dice score of 92 % on Kvasir-SEG and 94 % on CVC-ClinicDB with Colonformer 

reaching an average Dice of (79.0%) in ETIS-Larib. The trend persisted with NAS-designed and 

lightweight versions. NA-SegFormerestablished a new state-of-the-art result of 94.6% Dice on 

Kvasir-SEG and 81.0% on ETIS-Larib. Also, Polyp-LVT and LapFormer proved that transformer 

can be lightweight and realtime implementation is possible with accuracy over 92\% for Kvasir-SEG 

[28], [29]. 

The last recent hybrid frameworks such as M²UNet [29], UViT-Seg, VMDU-Net constitutes the state 

of the art. In particular, VMDU-Net achieved dice scores of 94.2% (Kvasir-SEG), 95.3% (CVC-

ClinicDB) and 82.0% (ETIS-Larib), which are better than those obtained by CNNs as well previous 

transformer-based models on all these datasets. These findings report that hybrid approaches and 

transformer architectures can better capture long-range dependencies and enhance the robustness to 

difficult cases. 

Table 2. Performance of Transformer-based and Hybrid methods for colonoscopic polyp 

segmentation across benchmark datasets 

Model Ref Dataset Dice (%) IoU (%) 

TransUNet (2021) [17] Kvasir-SEG 91.3 83.4 

  CVC-ClinicDB 93.9 86.8 

  ETIS-Larib 76.2 63.8 

Swin-Unet (2021) [16] Kvasir-SEG 90.7 82.9 

  CVC-ClinicDB 93.1 85.5 

  ETIS-Larib 74.1 62.0 

Polyp-PVT (2022) [21] Kvasir-SEG 92.0 84.0 

  CVC-ClinicDB 94.2 87.1 

  ETIS-Larib 77.5 65.1 

ColonFormer (2023) [22] Kvasir-SEG 92.7 85.3 

  CVC-ClinicDB 94.8 88.0 

  ETIS-Larib 79.0 67.0 

NA-SegFormer (2023) [24] Kvasir-SEG 94.6 88.0 

  CVC-ClinicDB 95.1 89.3 

  ETIS-Larib 81.0 70.2 

Polyp-LVT (2024) [25] Kvasir-SEG 92.1 84.4 

  CVC-ClinicDB 94.3 87.0 

  ETIS-Larib 76.8 64.5 

M²UNet (2023) [29] Kvasir-SEG 93.5 86.2 

  CVC-ClinicDB 94.9 87.5 

  ETIS-Larib 78.7 66.0 
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UViT-Seg (2024) [28] Kvasir-SEG 93.2 85.5 

  CVC-ClinicDB 94.5 87.2 

  ETIS-Larib 77.8 65.4 

LapFormer (2024) [32] Kvasir-SEG 93.8 86.7 

  CVC-ClinicDB 95.0 88.5 

  ETIS-Larib 80.5 69.0 

VMDU-Net (2025) [41] Kvasir-SEG 94.2 87.1 

  CVC-ClinicDB 95.3 89.0 

  ETIS-Larib 82.0 71.0 

Comparative Summary 

This pattern holds for all test sets on the three benchmark datasets. CNN-based approaches achieved 

strong baselines but saturated at about 90–93% Dice on Kvasir-SEG and CVC-ClinicDB while 

ETIS-Database reached up to 65–73%. Transformer based approaches, on the other hand, achieved 

better Dice and IoU scores with applying for ETIS higher than 80% in the recent models including 

NA-SegFormer [30] and VMDU-Net [31]. 

As one can observe from Figure 3, these observations signal that although CNNs still perform very 

well on the less difficult datasets; transformers and hybrids are more appropriate to address the 

complexity and complexity of real-world colonoscopy, offering higher accuracy and stronger 

generalization. 

 

 

 

4. Discussion 

The reported results and those in Table 3 reveal consistent trends in the development of polyp 

segmentation models from 2010s to the early current years. In short, Dice scores and IoU scores were 

greatly enhanced on benchmark datasets as architectures advance from early CNNs to attention-

boosted CNNs, pure ViTs and hybrid methods that combine the best performance of both paradigms. 

CNN implementations and limitations. 

U-Net [5] introduced the encoder–decoder architecture and skip connections. The spatial resolution 

was downscaled by the encoder gradually to capture semantical content, and up-sampling was used 

in the decoder for fine detailed structure. Skip connections retained boundary information by directly 

injecting encoder features into decoder levels. Such an architecture was light (fast) and may be trained 

in small medical datasets; a reason why it had performed well in Kvasir-SEG (Dice = 81.5%) and 

Figure 3. Performance Comparison of CNN and Transformer Models on Polyp 

Segmentation 
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CVC-ClinicDB (87.6%). but the utilization of local convolutions limited its receptive field. That is 

why U-Net performed poorly in ETIS (44.9%), where polyps are smaller, flatter and show up in more 

difficult imaging situations. 

This was tackled in UNet++ by modifying skip connections to densely nested pathways. UNet++ 

Like UNet++, instead of directly fusing encoder–decoder, the intermediate features in UNet++ are 

first passed through an additional convolutional blocks before combining. This results in multi-scale 

feature aggregation, and levels the semantic gap between encoder and decoder representations. The 

difference was even more apparent – manual boundary delineation improved, small structures were 

better captured and ETIS Dice climbed to 50.1%. In other words, UNet++ worked because 

“information transmission” was slowed down and more contextual learning had to occur [32]. 

ResUNet++ went further by incorporating residual blocks, atrous convolutions and squeeze-and-

excitation (SE) attention. It became easier for gradients to flow and stabilized learning when there 

were lots of layers. The application of atrous convolutions increased the receptive field size while 

keeping the parameters unchanged and allowing for more comprehensive attention to global context. 

SE modules re-weighed feature channels between layers to enable the model to focus on 

diagnostically important textures. And collectively conditioning exposed that these mechanisms 

effectively improved context reasoning in a systematic fashion without sacrificing efficiency, 

leading to an ETIS performance of 56.2%. Importantly, ResUNet++ was insensitive to inter-patient 

variability -- an essential property for clinical use. 

PraNet brought up the parallel reverse-attention( RA) mechanism, which is an important conceptual 

leap. Unlike segmenting the entire image at once, for RA, previously segmented confident regions 

were gradually masked out and the network was guided to focus its attention on uncertain ones (e.g. 

edges or small polyps). This “hard negative mining” in the architecture itself rendered the network 

inherently more aware of difficult and missed polyps. For this reason PraNet achieved 64.7% Dice 

on ETIS that is a leap in performance of CNNs. 

In the HarDNet-MSEG, a harmonic dense connectivity was employed to avoid redundancy of 

DenseNet-like architectures by means of connecting layers in an ordered and not a full-dense 

connection. This was enabled to build deeper networks with less than exponential memory growth 

and struck a balance between efficiency and accuracy. It requires fewers computation for the 

hiearchical features and preserves fine details that is important in medical segmentation. With 73.3% 

Dice on ETIS, HarDNet-MSEG could outperform its ancestors due to that it is efficient for fea- ture 

reuse and scalable and generalizable thanks to multi-level fusion. 

The CNN-based models have well succeeded as successive architectural innovations directly coped 

with the clinical challenges recently: • UNet++ improves boundary awareness with densely skip 

connections, ResUNet++ further promotes contextual understanding by invoking residual and atrous 

convolutions, PraNet subdues reverse attention to highlight difficult-to-detect areas, and HarDNet-

MSEG advances efficiency on the basis of harmonic dense connectivity. These improvements 

together led to the gains in generalizability and robustness across diverse benchmarks [33]. However, 

CNNs are inherently limited by local receptive fields and even by sophisticated modules such as 

atrous convolutions and sqeeze-and-excitation; they still do not effectively model long-range 

dependencies and global structural patterns in colonoscopic frames. This restriction accounts for 

their reduce transferability w.r.t. more challenging datasets such as ETIS, and motivates the necessity 

of transformer-based models which natively capture long range context information. 

Transformer-Based Architectures: Toward Global Context 

TransUNet was one of the first to hybridize CNNs and Transformers for medical segmentation. It 

used a CNN encoder for extracting low-level features, which it fed into a Vision Transformer (ViT) 

encoder capturing long-range correlations via attention. The decoder was U-Net based, to facilitate 

good recovery of fine scale details. The fusion of these two models was successful because CNNs 

are good at capturing local textures while Transformers well learn global spatial relationships. 

2TransUNet performed considerably better than the CNN-only baselines, with Dice scores greater 

than 89% across Kvasir-SEG and CVC-ClinicDB. It showed promise for CT colonography by 
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accommodating the global modeling of spatial relationship and yielding more robust detection on 

challenging ETIS images relative to any previous CNN. 

Swin-Unet further adopted the shifted window Transformer (Swin-T) into a U-shaped 

structure~\cite{sota_defeated}. The advanced window aggregation strategy made the attention 

calculation focused on local patches, but with the connection between different-local-patch windows, 

so it can be computationally efficient and capable of having global information. Swin-Unet naturally 

scaled to high-resolution medical images whereas vanilla ViTs not. In practice, this translated to 

improved localization of the boundaries and increased small polyp detection without practical 

computation cost. Swin-Unet thus represented a milestone: Transformers could be both accurate and 

practical at scale in endoscopy. 

Polyp-PVT based on the Pyramid Vision Transformer, which can produce multi-scale hierarchical 

representations like feature pyramids of CNN. This multi-scale property made it possible to model 

both small-sized and large-sized polyps, one of the limitations in plain ViTs. Via mainly mob pyramid 

attention architecture, Polyp-PVT gained Dice scores of over 92% on CVC-ClinicDB, and 

outperformed most CNNs in the field of ETIS with results to show that Transformer models could 

generalize lesion across lesions scales. 

ColonFormer further improved this by creating a polyp specific Transformer encoder. Different from 

generic ViTs, ColonFormer leveraged domain priors to enhance feature representation of tubular and 

blob-like structures. Its self-attention mechanism has a good coverage of long-range spatial 

dependencies, which is useful to capture the context not only from local boundary as well as that from 

global organs. Offering Dice >93% on CVC-ClinicDB and ~80% on ETIS, it established itself as a 

new state-of-the-art system especially in terms of generalization. 

Lightweight Transformers (LapFormer, Polyp-LVT) mitigated a significant pain point of the 

Transformer models: giant computational overhead. These models proposed attention pyramids and 

low-parameter variations of the model that kept much of the global context power, while not 

hampering its deployment in near real-time. Clinically, this is a trade-off of importance: colonoscopy 

demands real-time processing (~30 FPS), and lightweight Vits open up an opportunity for practical 

usage whereas methods based on bulky architecture as in the vanilla Vits do not. 

Transformer-based models did well by exploiting self-attention to learn long-range spatial 

dependencies, which is important due to the fact that subtle polyps might merge into mucosa or 

emerge from farther distance areas. Architectures such as Swin-Unet and Polyp-PVT further 

improved robustness through multi-scale representations, while ColonFormer has demonstrated that 

task-specific adaptation based on medical priors can reinforce clinical relevance. These advances are 

responsible for their better performance on difficult datasets, such as ETIS. Nevertheless, 

Transformers encounter some challenges: vanilla ViTs are expensive to compute and may not be 

suitable for real-time deployment in endoscopy; as a data-hungry model, it is difficult to apply viT 

into the medical imaging due to annotation constrain; the lightweight version such as Polyp-LVT 

LapFormer emerge but still struggle with consistent real-time deployment. 

Hybrid approaches: Bridging Local and Global 

Motivated by the complementary property between CNNs and Transformers, there are a series of 

hybrid approaches like TransUNet [46], Swin-Unet and their variants proposed in latest works. CNNs 

are very effective in capturing local, low-level features such as textures, edges and fine boundaries 

which are highly important for the visualization of polyps. Transformers, on the other hand, model 

long-range dependencies and global structural patterns that help to provide context information for 

ambiguous or flat polyp cases which CNNs frequently fail in. 

In practice, hybrids combine a CNN front-end encoder for feature extraction and a Transformer 

backbone to capture spatial dependencies, while the reconstruction process is done following a U-

Net like decoder. Detail sensitivity and context awareness are balanced in this architecture. For 

example, In the TransUNet, CNN-based boundary sharpness has been preserved whilst ViT blocks 

are utilized to remove false negatives in complex circumstances and seamless Dice scores have been 

extracted across both popular datasets (Kvasir-SEG, CVC-ClinicDB) and harder benchmarks (ETIS). 

In the same way, Swin-Unet’s windowing mechanism of shifted windows offers hierarchical feature 
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maps at different scales which increases robustness against varying polyp sizes and balances 

complexity. 

From the clinical point of view, hybrids have been successful as they compensate for CNN’s main 

drawback (little global context), but without giving up deep CFPs’ efficiency on medical 

segmentation problems. Simultaneously, they address Transformers’ limitations: hybrids have 

smaller sample complexity than pure ViTs due to CNN pre-encoding and runs faster than full 

attention models — important for real-time colonoscopy. 

So hybrids are not a mere trade-off -- they represent a clinical sensible evolution by which we see 

that combining the local feature sensitivity and global attention will generate greater accuracy, 

efficiency, and generalizability; thus bring computer-aided colonoscopy closer to deployment into 

routine practice. 

Dataset-driven performance differences. 

A cross-comparison between the results on Kvasir-SEG, CVC-ClinicDB and ETIS-Larib 

demonstrates how significantly the dataset characteristics affect segmentation performance. For 

relatively clean and balanced datasets (e.g., Kvasir-SEG and CVC-ClinicDB) the majority of CNN 

or transformer-based models obtain superior Dice scores above 85–90% as well. These datasets are 

packed full of highly visible polyps, good imaging conditions and lesions big enough to be more 

forgiving to architectural shortcomings. 

On the other hand, the ETIS-Larib dataset was proved to be significantly more difficult. Dice scores 

on CNNs at previous timesteps in a similar manner have dropped here for early CNNs like U-Net 

and down to 44.9%, with even the ResUNet++ model reaching only 56.2%. There are fewer samples 

in ETIS, the size and shape of polyps in ETIS are smaller and flatter, and there is more diversity in 

terms of lighting conditions and imaging quality, which further induces the limitation of local feature 

extraction that CNN holds. Models that accounted attention and global context explicitly [eg, PraNet 

(a reverse-attention mechanism) and HarDNet-MSEG architecture with efficient dense connectivity] 

increased the performance of ETIS performance(64.7% and 73.3%, respectively), but their 

improvement was not substantial when we compare their performance to those in easier datasets. 

Transformerized and hybrid architectures reduced this gap. In capturing long-range dependencies 

and multi-scale context, TransUNet and Polyp-PVT were also more robust on ETIS and greatly 

outperformed those CNN-only baselines in terms of Dice and IoU. This indicates that global feature 

representation is particularly beneficial in challenging clinical environments where polyps have 

subtle appearance and unclear borders. 

In general, dataset-driven discrepancy illustrates two important findings: (1) performance in easy 

datasets may overestimate the clinical-readiness, as real-world endoscopy typically shares complexity 

with ETIS; and (2) generalization to challenging datasets serves as an essential benchmark for real 

deployment, emphasizing both architectural innovation and diverse dataset provision in advancing 

computer-aided polyp detection and segmentation. 

Comparison with previous reviews. 

Previous reviews on polyp segmentation studies mainly focused on the CNN-based methods, 

exhibiting a status of the field till 2021. This study systematically integrates transformer and hybrid 

approaches, and extends previous work by showing that recent performance advances (since 2022) 

are largely due to attention. Our findings also reinforce that to some extent (i.e., when benchmark 

performance approaches saturation on CVC and Kvasir test sets), ETIS is a problem yet to be solved, 

which constitutes an evidence for the distinction between laboratory benchmarks and real clinical 

performance. 

In conclusion, the comparative study indicates that transformer and hybrid models have become the 

state of the art in colonoscopic polyps segmentation. However, issues of generalization, limited 

available datasets and clinical validation are still open challenges. Alleviating these shortcomings 

will necessitate greater multi-center annotated collections, lightweight model development, and 

explainable AI architectures promoting clinical trust. 

Limitations and Research gaps 
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While the polyp detection and segmentation has been well developed, there are also some remaining 

issues. The first reason is that ViTs are more data-hungry than CNNs as only self-attention 

mechanisms in ViTs scale with the amount of training data. Despite the fact that transfer learning 

from natural-image datasets, such as ImageNet, gives certain advantages, domain gap between 

natural and endoscopic images limits performance improvement [34], [35]. 

Model generalization across clinical centers is also poor, second. Benchmarking frameworks such as 

EndoCV have shown that many state-of-the-art methods over-fit to individual datasets, and degrade 

steeply in cross-dataset validation [36]. Current datasets are inadequate to address this issue, which 

is further intensified due to the limited diversity of current datasets. Despite attempts to mitigate 

generalizability by initiatives such as multi-center data efforts like PolypGen, dataset bias or 

efficiency for adding new annotations and the lack of privacy-reasoning are still important challenges 

[37]. 

Third, there is a practical limitation due to the computational complexity. With its power of 

information aggregation, one natural question arises: Can we scale our framework to larger transform 

based architectures? Large-scale transformer based methods require extensive GPU/TPU resources, 

which can be expensive to train and difficult in terms of real-time deployment like colonoscopy 

where inference speeds need to exceed 30 FPS [38], [39]. Light-weight transformers and hybrid 

models are proposed to alleviate this problem, but balancing accuracy and efficiency is still an issue. 

Lastly, explainability and clinical validation still remain significant bottlenecks. Deep models are 

frequently “black box” in nature, providing little explanation of how decisions were made. This 

erodes clinical confidence and prevents regulatory approval." There have been calls for interpretable, 

transparent AI systems following reviews and benchmark studies, but few models that explainability 

modules can be integrated to show that the effects are still validated in prospective multi-center 

clinical trials [40], [41], [42]. 

Trends and Future Outlook 

In this context, there are several future research directions for polyp segmentation. CNNs will 

continue to be powerful baselines for resource-limited scenarios given their efficiency and maturity, 

and transformer-based approaches will continue to lead state-of-the-art benchmarks thanks in part to 

their high capacity for global context capture [43], [44]. 

Hybrids of CNNs and transformers are the future: harnessing the local feature precision from CNNs 

and long-range dependency modeling of transformers will likely be the way to go. Recent studies 

have shown that such integrated strategies have systematically achieved better performance than the 

single models [45], [46]. 

To alleviate the latter issue of dataset paucity, promising future directions include self-supervised 

learning, synthetic data generation and domain adaptation methods that endeavor to lower reliance 

on large amounts of manually labeled data [47]. Efficiency-oriented techniques (e.g., model 

pruning, quantization and lightweight transformer designs [48]) will facilitate adoption of our method 

for real-time usage on average colonoscopy equipment. 

In addition, explainable AI (XAI) will be essential for clinical uptake. Transparent attention 

visualization, uncertainty quantification, and clinician-inthe-loop validation should receive more 

attention [49], [50]. In addition to single-modality imaging, multimodal data (e.g., histopathology, 

genomics, and patient meta-data) integration is expected to contribute to enhance diagnostic 

accuracy and robustness leading toward clinically feasible AI-assisted endoscopy [51], [52]. 

In the end, the next decade will likely see a shift from research prototypes to clinically validated, 

multimodal and interpretable AI systems that close the divide between academic discovery and real-

world clinical utility. 

 

 

5. Conclusion. 

In this work, we have presented a systematic review that captures the development of deep learning 

methods for colonoscopic polyp detection and segmentation including CNNs, ViTs, and hybrid 

architectures. Starting from U-Net [5] and evolved into other variants including UNet++ [7], 
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ResUNet++[6], PraNet [36], the CNN family archit ectures have achieved competitive baseline 

models with Dice scores between 0.80–0.90 on Kvasir-SEG and CVC-ClinicDB. Nevertheless, their 

use of local receptive fields hindered generalization and they often performed poorly in challenging 

datasets like ETIS-Larib (Dice score < 0.60). 

ViTs allowed a paradigm shift in the way global dependencies are modelled using self attention, 

which could help capture more robust subtler features across variations of scale, blurred boundaries 

and low contrast polyps. Models including Polyp-PVT, ColonFormer and NA-SegFormer 

outperformed CNNs in all cases with Dice over 0.90 on Kvasir-SEG, ClinicDB and showed 

reasonably well transferability to ETIS. However, their computational cost and need for data still 

present challenges for a wide clinical adoption. 

Hybrid architectures Hybrid-style architectures, such as TransUNet [14], Swin- UNet [75] and 

VMDU-Net [8], have arisen as the most promising direction to adapt transformer-based global 

reasoning with CNN-based local feature extraction. These models proved to be robust and yielded 

state-of-the-art results, as HarDNet-MSEG and NA-SegFormer managed to surpass 0.70 Dice ETIS 

threshold that was never crossed by CNN-only anatomical-driven methods. 

However, remaining issues have not been addressed such as scarce datasets, computational efficiency 

and limited clinical validation with different populations. Further progress will also be based on the 

further development of multimodal datasets, the construction of light and yet accurate architectures, 

as well as the integration to explainability in our systems to gain clinician trust and regulatory 

approval. 

To summarise, CNNs are still quite efficient baselines, ViTs are the new state-of-the-art and hybrids 

are a middle-of-the-road route to clinically deployable AI. The fusion of multimodal data and 

explainable AI frameworks is poised to characterize the next era of computer-aided endoscopy, 

bringing about earlier diagnosis, enhanced diagnostic yields and ultimately better outcomes in CRC 

prevention. 

Practical Implications 

For our clinical partners, these findings indicate that AI-assisted colonoscopy systems are developing 

fast with hybrid and transformer based models providing improved assistance in diagnosing small or 

flat polyps often missed in practice.” For creating new datasets, the review emphasizes the pressing 

need for larger, more diverse and multi-center annotated datasets to guarantee generalizability and 

mitigate bias. For academics, the results highlight trade-offs between lightweight interpretable models 

and accuracy that are generalisable to real-world performance. Together, these directions are 

essential for converting algorithmic innovation into clinical practice towards earlier CRC detection 

and better patient outcomes. 

Limitations of This Review 

Although the present systematic review attempted to offer an overall summary of deep learning for 

colonoscopic polyp detection or segmentation, it has several limitations that should be admitted. One, 

the database search was limited to four databases (PubMed, Scopus, IEEE Xplore and arXiv) and 

English literature. This may be the reason we neglected potentially relevant studies published in other 

databases or in non-English journals, which introduced selection bias. Second, even though selection 

and exclusion criteria met PRISMA recommendations, the final set of studies included in this review 

may not entirely represent unpublished work, negative results or commercial solutions that are not 

reported through peer-reviewed channels. Third, the disparate reporting practices between studies 

(e.g., different dataset splits, preprocessing methodologies and evaluation protocols) affected the 

direct comparison of performance metrics. For instance, while Dice and IoU were uniformly reported 

across studies across the board; inference speed (FPS) and computational cost were only obtainable 

in some of the papers limiting our capability to perform a systematic analysis for real-time feasibility. 

Fourth, here we mainly focused on image-based models with the datasets like Kvasir-SEG, CVC-

ClinicDB, and ETIS-Larib, possibly neglect video-based/multimodal research studies which are 

becoming more critical for clinical use. Finally, since the field is changing quickly, newly 

transformer-based or hybrid models developed after early 2025 were not accounted for and their 

relevance should be evaluated in follow-up updates. 
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