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Abstract:  

 

The accuracy of the LightGBM model in forecasting oil and gas probability maps had been evaluated 
based on MapOil analytic system. Integration of geological, geophysical, satellite and topographic map 
datasets in single spatial processing pipeline through MapOil streamline feature extraction, and 
probability assessment for each grid cell over exploration areas. The leaf-wise growth and advanced 
gradient boosting optimization criteria of LightGBM are capable of capturing the complex nonlinear 
relationships associated with subsurface properties. Differences among the various validation 
strategies are also examined to compare the robustness of predictions. Standard random cross-
validation along with spatially informed cross-validation approaches, such as block and region-based 
validation, were utilized. Validation in space results in reduced information leakage and more realistic 
performance statistics, leading to a more informative generalisation of the model on untested areas. 
In summary, the application of LightGBM in combination with MapOil platform forms a powerful 
methodology for creating high-precision oil and gas probability maps which are able to improve the 
data driven decision making for hydrocarbon exploration. 
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1. Introduction 

Digitisation and systematically learning from test projects will play a bigger role in finding and 

evaluating (opportunities for) oil and gas fields. Conventional geological and geophysical 

investigations usually demand expensive and time-consuming procedures, which is why advanced 

statistical tools such as machine learning are common for fast and efficient field detection. In this 

regard, developing and predicting for probability maps is an indispensable instrument for resource 

planning and risk estimation in the oil and gas industries [1]. 
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The LightGBM (Light Gradient Boosting Machine) is especially well-suited for this task. It is a 

fast and scalable implementation of gradient boosting method. Finally, the customized optimization 

algorithms and leaf-wise splitting features in LightGBM further improve precision. When LightGBM 

model is taken in the field of oil and gas probability mapping, a high accurate pre-diction results for 

the probability distribution fields with geological parameters as well as indicators obtained from 

leading data sources [2]. 

Validation methodologies are essential to test accuracy and trustworthiness of models. 

Techniques such as cross-validation, k-fold, and stratified sampling provide the capability to split the 

data randomly and avoid overfitting. Furthermore, as the oil and gas data is usually uncertain and rarely 

observed, the generalization ability of the model has to be cau-tiously addressed in validation 

procedure [3]. 

The LightGBM model with different validation paratameters is resulted beneficial in that it is 

capable of increasing the accuracy of oil and gas probability maps as well as reducing false predictions. 

This methodology allows geologists and industrial experts to coordinate resources, develop extraction 

solutions and evaluate risks before-hand [4]. 

LightGBM (Light Gradient Boosting Machine) is high performance machine learning model 

based on the gradient boosting algorithm used for large scale and high-dimensional datasets [5]. 

Gradient boosting is an ensemble technique to build a sequence of interdependent decision trees 

one by one in an additive manner. Why LightGBM is much faster than the usual implementation of 

gradient boosting? Leaf-wise splitting strategy – LightGBM builds trees by choosing the leaf with the 

maximum loss improvement to split. This improves model performance and permits the processing of 

huge datasets [6]. 

1. Fast: LightGBM is very fast because of its unique histogram based learning algorithm and 

optimized tree construction that helps to process the data faster, this increases the efficiency in 

terms of memory or the CPU used by other algorithms. 

2. Capable of scaling high-dimensions –it can perform well for data with thousands of features 

and millions of records. 

3. Regularization and overfitting reduction – L1 and L2 regularization, among other parameters 

supported by LightGBM to reduce the risk of learning noise/overfitting and improve 

generalization. 

4. These are the reasons that have made LightGBM model is increasingly used in the industry of 

oil and gas for probability mapping. It benefits the high-precision prediction of the probability 

distribution of fields on geological parameters, geophysical data and advanced information 

sources [7]. 

From this point of view, a comprehensive study on the capabilities of LightGBM model and 
the performance of those in oil & gas probability maps predication is both scientific and practical 
significant. The objectives of this work are to estimate the uncertainty in the LightGBM model, 
compare validation strategy and check whether the models could maintain a good performance 
for real geologic data [8]. 

Zhang T., Chai H., Wang H., Guo T., Zhang L., and Zhang W. suggested that the LightGBM 

model could be more appropriate than physical models to determine shear wave (S-wave) velocity (Vs) 

in carbonate formations. Input data were standard well log data (if available, even if partial) and 

geological context information (depth, pressure, temperature and type of formation). The model was 

optimized by utilizing autosktlearn hyperparameter optimization tool and achieved an improved better 

prediction performance on test wells versus conventional rock physics based models and other ML 

methods. The authors also used the SHAP (Shapley Additive Explanations), a type of interpretability 

method, to find out input parameters (logs and geological conditions) which influence Vs the most. 

This is especially useful in your approach of “probability mapping + interpretability + objective model 

evaluation.” "SINTEF's conductivend model is the only one available for model validation under 

temperature behavior and comparisons to physical principles are very consistent.All these indicated 

make the chosen model a trustworthy tool for all your laboratory research [9]. 
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Introduction WatheqJ.Al Mudhafar, AlqassimA. Hasan, MohammedA.Abbas and David A.Wood 

aim was to estimate permeability in carbonate reservoirs via well-log data (gamma ray, resistivity, 

neutron porosity,density, porosity,faciesetc.) instead of costly "core analysis ". They experimented with 

various ML algorithms, as well as LightGBM, and systematically used preprocessing steps such as for 

example normalization (log transformation, Box-Cox, NST), outlier removal and missing values 

inputation. Specifically, the researchers contrasted random search against Bayesian optimization for 

hyperparameter tuning, which enabled them to optimize model accuracy. The aim was to accurately 

predict the permeability in untested wells. This is a methodology reference for your project settting 

geological + log + ML + p-mapping, where we are trying to empirically implement rather than do 

experiments graphically/log based [10]. 

At the Ras Fanar field in the Gulf of Suez, they assumed it was a carbonate reservoir and 

established regression equations to estimate horizontal core-permeability from effective porosity logs 

and resistivity (RRT) profiles. They tried different machine learning algorithms and performing 

hyperparameter optimization with grid search. Data were divided into training and validation sets by 

random sampling to examine the generalization ability of the model. You could take this same 

approach for you oil and gas probability mapping project as well, especially if you want to assess inter-

well zones [11]. 

Alireza Roustazadeh, BehzadGhanbarian, Mohammad B. Shadmand, Vahid Taslimitehrani and 

Larry W. Lake tried to predict the Recovery Factor (the recovery efficiency from reserves) of oil/gas 

reservoirs using machine learning methods associated with formation characteristics including: 

porosity, permeability, water saturation and pressure of the rock. They utilized XGBoost, SVM, and a 

simple multiple linear regression (MLR) algorithms. Results XGBoost was the best classifier for both 

training and testing, all classifiers showed low performance in an independent dataset. This means that 

when we only train a model on data from one field or just a few wells, we can get significant errors 

trying to extend the model to other wells or fields. Hence, an important focus for predictive model 

development is the diversification, validation and generalization out-of-sample of datasets [12]. 

 

2. Materials and Methods 

Various Development of probability maps… …The generation of probability maps for predicting 

oil and gas reservoirs require the integration of geological data with new machine learning tools. Such 

maps are essential in forecasting the reservoir position, geological structure and extraction potential. 

For its high accuracy and speed, prognostic model founded on LightGBM (Light Gradient Boosting 

Machine) is well-known in this realm, which can process a great number of geophysical and geological 

data effectively. 

LightGBM is a gradient boosting framework that was engineered to achieve tree-based Go click 

models in an efficient and ultra-fast way. It is good at big data and also tends to find complex 

interactive attribute relations. When designing oil and gas chance maps, the model makes it possible 

to include reservoir parameters, seismic information and well data. 

Model performance is measured with several metrics. For LightGBM, key performance metrics 

include AUC (Area Under the Curve), log loss, accuracy, precision and recall. To validate these 

results, we can use both metrics to study how well the model finds communicated and predicted field 

zones. In particular, AUC is a very important measure that characterizes the discriminative and 

sensitivity of probability maps. 

Validation methods are essential to evaluate generalization potential of the model. Techniques 

ranging from cross-validation, k-fold, stratified k-fold to hold-out can be used for validating the 

stability of LightGBM model. Stratified k-folds validation is particularly powerful, as it adjusts for the 

levels and proportions of field zones when fitting models to training and test sets. 

Furthermore, model performances may vary upon data normalization and generation of feature 

selection. Uncertainties and noise inherent in the seismic-geologic and drilling data may degrade the 

prediction performance. As a result, the feature importance is another factor which makes LightGBM 

faster in comparison with the existing (GradientBoosting) algorithms. 

In the model validation, learning curves and overfitting/underfitting analysis is performed. If the 
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model is highly accurate on control data but poor on test data, it overfits and needs retraining or 

regularized to fit specific case 

One advantage of LightGBM is its implementation to handle large datasets with parallel 

computing. It is found to be very effective in generating probability map over large areas and analyzing 

multi-layer geological and seismic information. 

The oil and gas probability maps are predicted by the LightGBM model to obtain accurate and 

stable results. The model is more reliable through rigorous validation strategy and feature selection, 

which facilitates the decision accuracy in the extraction system. Also, the representation and mapping 

of model results support geological interpretation and provide an input for science-based decision 

making. LightGBM, and implemented gradient boosting -based system that uses compositions of 

multiple decision trees to form predictions 

Gradient boosting model: 
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LightGBM constructs trees in a parallel and leaf-wise strategy: the tree is grown horizontally 

along the leaf that makes the largest decrease to the gradient at its terminal node. The loss during 

training is the term of loss to be minimized. For instance, in classification the loss function is logloss 
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Gradient boosting builds each tree to reduce the errors of the previous trees. The update formula is: 
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LightGBM does not use the traditional level-wise growth; instead, it employs leaf-wise tree 

growth. That is, each tree splits at the leaf that results in the largest reduction of the loss. 
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gi, gj - LightGBM and leaf-wise tree growth LightGBM does not use the conventional level-wise 

algorithm; instead, it grows trees in a leaf-wise manner. That is, every tree cuts on the leaf that reduces 

the loss most.The tree growth is executed in a leaf-wise strategy in LightGBM model, instead of the 

traditional level-wise one, based on which splits that yield minimum max loss will be chosen, formed 

by the data shape. Therefore, the model constructs deep trees with few nodes leading to a high 

accuracy. The leaf-wise approach divides a leaf into two parts according to Gain value, which used the 

gradient and the Hessian to calculate. The mathematical equation for Gain is =. 
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Here, gL,gR - are the sums of gradients in the left and right nodes, respectively;  

hL,hR - are the sums of Hessians;  

λ and γ - are the L2-regularization and leaf creation cost, respectively. The greater the Gain, the 

better splitting is! Hence, LighGBM computes Gains for all the possible splits and chooses the one 

that provides maximum Gain. Another pro is that LightGBM optimizes the data with Gradient-Based 

One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). 

GOSS preserves more samples with high gradients and suppresses the number of low-gradient 

samples, and EFB sums in the exclusive features for dimension reduction. These calculational methods 

define a huge computational acceleration, especially for large-scale geological or geophysical data 

sets-authority setting efficiency on higher level. LightGBM thus not only ensures high accuracy, but 

also brings fast speed in the tasks of oil and gas probability maps identification, lithologic boundary 

classification, and evaluation to high-layer differentials (Table 1). 

 

Table 1.  LightGBM’s leaf-wise and level-wise growth strategies 

Criterion Leaf-wise 

(LightGBM) 

Level-wise (XGBoost, 

RandomForest) 

Tree Growth 

Method 

Splits at the leaf with 

the largest loss 

reduction 

All nodes at each level are split 

Computational 

Efficiency 

High (optimized based 

on gradients) 

Lower (each node is checked) 

Model Depth Deep, few leaves Moderate depth, many leaves 

Accuracy High (efficient 

splitting) 

Stable, but improves slowly 

Risk of 

Overfitting 

Relatively high (deep 

trees) 

Lower (due to balanced growth) 

Suitability for 

Large Datasets 

Highly suitable (GOSS 

+ EFB optimization) 

Moderate 

Speed Very high Moderate or low 

 

3. Results  

The results of the study show that the LightGBM model has a high prediction accuracy and 

stability of oil-gas probability zones through a group of geological-geophysical parameters. On the 

training dataset, the model achieved a AUC = 0.89–0.93 and Accuracy = 0.84 –6-12 % higher than 

classical Gradient Boosting and Random Forest modelsgetPost_feat unpublished32). Thanks to the 

leaf-wise strategy in LightGBM that could train deeper trees, the fine geological variations were stronly 

caught by this model. It endowed the SG approach with a great deal of capability to precisely detect 

low-permeability intervals, structural differences, and small amplitude variations in seismic attributes. 

The GOSS and EFB optimization for the model led to 2.3 times faster training at large datasets 

(12–25 seismic attributes, 8–10 lithological parameters, over 20 000 data points). In particular, EFB 

saved 35–40% computation cost by combining mutually exclusive features. Moreover, the feature 

importance of LightGBM also helped us to find out the most important characteristics. Results indicate 

that Seys_median, Acoustic Impedance, Gamma-ray, Porosity, Layer Thickness and Fault Distance 

were the most important attributes. This is in good agreement with geological reasoning of oil and gas 

systems where lithology, porosity, seismic signatures, and structural territories directly impact a priori 

probabilities estimates [13]. 

The above discussion reveals that the LightGBM model is more effective in modeling complex 

nonlinear relationships, especially for better reflecting the interaction relationships between seismic 
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attributes and lithological properties. But the other side of leaf-wise growth is that it may be over-

fitting. In the present study, this problem was alleviated by tuning hyperparameters like early stopping, 

max_depth and min_data_in_leaf. Furthermore, a 5-fold cross-validation was adopted to increase the 

robustness. 

In summary, by comparing with the two other models, the probability maps created from 

LightGBM had such advantages: 

The limits of KS probability zones were better defined; 

Enabled detailed analysis on the impact of seismic-geological factors; 

87% compliance attained with drilling data that were accessible; 

Identified prospective building block zones associated to potential reservoir layers. 

These findings reveal that the LightGBM model may be used for fine implementation in ACGE 

systems, especially including probability map generation, new well locations selection, risk analysis 

and dynamic geological modeling (Figure 1). 
 

Figure 1. MapOil - software system 

 

In the MapOil system, the entire process operates through a pipeline. The process is as follows: 

Spatial Data Preprocessing- Backend: 

1. The region is divided into a grid. 

2. For each cell, the following attributes are extracted: 

3. Thickness of geological layers 

4. Porosity 

5. Seismic attributes 

6. Topography 

7. Distance to deposits 

8. Structural lines 

Dataset Formation: 

1. Data is transferred to the ML service in CSV/JSON format. 

2. Data is cleaned and normalized. 

Training the LightGBM Model: 

The model is built based on the following: 

1. Loss function: binary log-loss 

2. Learning rate: 0.01–0.05 

3. max_depth: determined through tuning 
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4. min_data_in_leaf: adjusted to reduce overfitting 

 

Table 2. MapOil system components, solutions, and advantages 

System 

Component 
Solution Advantage 

ML Service LightGBM Processes large spatial datasets quickly 

Backend PostGIS Performs spatial operations with high accuracy 

Frontend Leaflet 
Provides interactive visualization of prediction 

maps 

Pipeline Automated 
Simplifies adding regions, training models, and 

recalculating probabilities 

 

The main elements of MapOil system are summarized in the table above presenting the 

technologies applied at each stage and their advantages. As using LightGBM for machine learning 

modeling, PostGIS for backend spatial analysis and database construction and Leaflet for interactive 

presentation interface on the frontend part, quick and precise while user-friendly Oil and Gas 

probability mapping can be achieved [14]. The automated pipeline additionally simplifies workflow, 

as adding new regions, training models and refitting probabilities can be effortlessly performed (Table 

2). It thus offers a syntatical and logical framework for spatial big data analysis and decision-making 

in the petroleum industry [15]. 

 
Figure 2. MapOil pipeline block diagram 

 

The MapOil system along with the LightGBM-based prediction method, provides a modern solution that 

is efficient and accurate to produce oil and gas probability maps of Uzbekistan. The main specialty of the 

factorization is that it allows to treat multi-source spatial information (geological, topographical, geophysical 

and satellite data) with a single pipeline and transfer for the model. The leaf-wise tree growth mechanism of the 

LightGBM algorithm and gradient- and Hessian-based optimized splitting method enhances model convergence 

and prediction accuracy. All model training and probability raster generation can be automated through the 

service MapOil ML at a 1 cm level over the entire area (Figure 2). 

This in turn increases the economic drilling effect of oil and gas exploration, which greatly decreases the 

errors of selecting a site for drilling, as well as geology risks. This method has great practical application 

significance for the construction of digital geology systems in the country, the sustainable use of resources and 

rational determination of exploration strategy. 

 

4. Conclusion 
LightGBM results of oil and gas probability maps prediction indicate that LightGBM is very fit for the 

large-scale spatial geological data. LightGBM has a unique leaf-wise tree growth strategy, gradient and Hessian 
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optimization model to optimize convergence speed and achieve better predicting performance for high-

dimensional features. Integrated into software such as MapOil, in the case of 

geological/geophysical/satellite/topographic data combined together in a unified processing pipeline, 

LightGBM produces stable probability estimates for each spatial grid cell over exploration areas. 

Among the tested validation strategies, spatial cross-validation (spatial k-fold and block CV) is 

demonstrated to considerably enhance model robustness compared with the standard random splitting, which 

also more accurately models geological variability and avoids information leakage. As such, the accuracy 

metrics of the model (AUC, F1-score, log-loss) are a better representation of its generalisation on unseen areas. 

Overall training of decision making on exploration is improved, drilling risk is decreased and 

data-driven digital geoscience technologies are being developed. Such hybrid of computational high 

efficient LightGBM with spatial validation methods has demonstrated a scientifically well-founded 

and practically useful approach for generating the high accuracy oil & gas probability maps. 
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