

On Semi Strong and Semi Weak Sets in Topological Spaces

Othman Rhaif Madlool Al-Charani, Qasim Hadi Heddam

Directorate General of Education in Babylon, Ministry of Education, Iraq

Abstract:

We investigate the concept of semi-strong (s-strong) and semi-weak (s-weak) sets in topological spaces. We begin by giving definitions, some examples and fundamental characteristics for the two sorts of sets. The two sets are contrasted, and their links are described and studied. In addition, a class of functions using semi strong and semi weak sets has been discovered in topological spaces. Additionally, s-strong and s-weak sets are independent and cannot ever be comparable.

Keywords: s-minimal semi-open sets, maximal semi-closed sets, s-strong sets, and s-weak sets.

1. Introduction

The purpose of this study is to have a more thorough understanding of topological ideas. The main objective of this sets research is to support the advocacy qualities of the theories. In [1], N. Levine (1963) defines semi-open (s-open) and semi-closed (s-closed) sets and examines their characteristics, in topological space, he defined a set A called the (s-open) set if find an open set $O : O \subseteq A \subseteq \overline{O}$ where \overline{O} denoted by the closure of O in X , the complement semi-open (s-open) set named semi-closed (s-closed) set. In (1971) Semi-closure was introduced by S. G. Crossley and S. K. Hildebrand in (1971), they defined it as the smallest semi-closed (s-closed) set contained in a set A in topological space [2], and shortened by $Scl(A)$ or \overline{A}^s . The truth \overline{A}^s is the intersection of all semi closed sets contained A , $\overline{A}^s \subseteq \overline{A}$ and $\overline{\overline{A}^s}^s = \overline{A}^s$. S-minimal open and maximal closed sets, two significant forms of sets that have been explored, were presented in 2003 and 2001, respectively. These sets are subclasses of the sets s-open and s-closed. Later studies in [5]–[7] looked at s-minimal open and s-maximal closed sets as well. This work's goal is to present certain definitions using s-minimal open and s-maximal closed sets, which we refer to as s-weak sets and s-strong sets, respectively. We take a look at several essential characteristics and lay some theoretical groundwork for them. Additionally, we offer three new functions: s-strong maximal continuous, s-strong maximal continuous, and s-strong

irresolute functions. We also examine the relationships between these functions. In [8] R. A. Al-Abdulla (2021) defines strong and weak sets and explores their characteristics. In this work, we present and study new classes of s-connected spaces utilizing strong and weak sets.

Notation:

We shall refer to the topological space by its symbol, (*tp-s*).

2. Preliminaries

Definition(2.1): [9]

Assume that X be a (*tp-s*) and $A \subseteq X$. A is called semi-open (*s-open*) set in X iff $A \subseteq \overline{A^\circ}$. The complement of *s-open* set is named semi-closed (*s-closed*) that is A *s-closed* is set iff $\overline{A^\circ} \subseteq A$. The intersection of all *s-closed* subsets of X containing A is named semi-closure (*s-closure*) of A and the union of all *s-open* subsets of X contained in A is called semi-interior (*s-interior*) of A , and are denoted by \overline{A}^s , A^{os} respectively.

Definition (2.2)[3]: Let (ε, t) be a tripod-s. Then:

- (1) If an open set H is in H and differs from the empty set, then H is said to be a minimal open set (or just an m-open set) if all other open sets that should be incorporated into H are either H or the empty set..
- (2) If every closed set that contains F is also a subset of F , then the closed set F of F, G is said to be simple or maximally closed (*M-closed*).

Definition(2.3)[2]: If (X, t) is a *tp-s*.

- (1) If an *s-open* set H is present and different from the empty set, then it is called a minimal *s-open* set (or simply an *ms-open* set). If every *s-open* set that is contained in H is also H or the empty set, then H is said to be an *ms-open* set.
- (2) If an *s-closed* set F is in ε , then it is also called a maximum *s-closed* set (or simply an *ms-closed* set) if the set of open intervals containing F is either the same as F or smaller in size.

Definition(2.4)[8]: Let (ε, t) be a *tp-s* set. If A° is an *m-open* set, then $A \neq \emptyset$: $A \subseteq \varepsilon$ is called a weak set (or simply a *w-set*).

If $\neg A$ is an *m-closed* set, then A is called a strong set (or simply a *s-set*).

3. The Main Findings

Definition(3.1): Let (ε, t) be a *tp-s* set. Therefore, a properly nonempty set of $A \subseteq \varepsilon$ is:

1. If A° is an *ms-open* set, it is called a semi-weak (*sw*) set.
2. If $\mu(A)^\circ$ is an *ms-closed* set, it is called a semi-strong (*ss*) set..

Example(3.2): Consider $X = \{a, b, c\}$ with topology $t = \{\emptyset, X, \{a\}\}$. Then:

Open sets: $\{\emptyset, X, \{a\}\}$

s-open: $\{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$.

Maximal open : $\{a\}$

Maximal *s-open* : $\{a, b\}, \{a, c\}, X$

w-set: $\{X, \{a\}, \{a, b\}, \{a, c\}\}$.

sw-set: $\{X, \{a, b\}, \{a, c\}\}$.

Remark (3-3): Let (X, t) be a *tp-s* then:

- 1- Not all open set is maximal open as in [Exam.ple(3.2)]show that $\{a\}$ is open but is not maximal open set.
- 2- Not every maximal s-open set is open as in [Exam.ple(3.2)]show that $\{a, b\}$ is maximal s-open but is not open set.
- 3- Not every open set is Weak set as in [Exam.ple(3.2)]show that $\{\emptyset\}$ is open but is not Weak set.
- 4- Not every Weak set is open set as in [Exam.ple(3.2)]show that $\{a, b\}, \{a, c\}$, is Weak set but is not open set.
- 5- Not every s-open set is sw-set as in [Exam.ple(3.2)]show that $\{a\}$ is s-open but is not sw-set.
- 6- Not every open set is sw-set as in the [Exam.ple(3.2)]shows.

that $\{a\}$ open sets but is not sw-set because $\{a\}^{\circ s} = \{a\}$, which is not maximal semi.-open in X .

Proposition(3.4): Let X be tp-s then the union of all sw-sets in X is also sw-set.

Proof:(clear)

Proposition(3.5): Let ε be a set of sets. Next, the meeting of two sets in ε that are both smaller than or equal to a third set is not a set in ε , this is demonstrated in the example (3.2). Obviously, $\{a, b\}$ and $\{a, c\}$ are both subsets of ε , but $\{a, b\} \cap \{a, c\} = \{a\}$ is not a subset..

Theorem(3.6): Allow (ε, t) to be the tp-s set, and H to be the complement of it. Then H is an Ms-closed set if and only if H^c is an Ms-open set.

Proof:

Let A be a maximal s-closed set, $A \subset X$ or $A \subset A$, therefore $[\emptyset \subset A] \wedge c$, hence $A \subset X$ or $A \subset A$, which means A is a maximal s-open set..

Theorem(3.7): Let (ε, t) be a tp-suple, and A be an s-open set in ε . Then A is considered an open set and only if it is considered an open set..

Proof:

Let A be a set that is both s- and an w-closed set. Then $A^{\circ s}$ is an open set that is ms-bordered, and $A = A^{\circ s}$. As a result, A is an ms-complete set. Alternatively, consider the case where A is an ms-complete set. Then A is an open set, so $A^{\circ s}$ is also an open set. As a result, A is a set of swaps..

Example(3.8): Allow (R, t_u) to be a tp-system, where R is the domain of real numbers and t_u is the standard topology. $(R - 1)$ is therefore an s-open set, although it is not an ms-open or a sw-open set. Despite 1's lack of ms-ness or ss-ness, it still constitutes an s-closed set..

Theorem(3.9): Let (ε, t) be a tp-sys tematic set that includes the intersection of any two open sets in ε as a part of its system. Next, an s-open sub set of ε is considered an ss set if and only if its complement, H^c , is an sw set..

Proof:

Let \mathcal{H} be ss-set and \mathcal{U} an s-open set like that $\mathcal{U} \subseteq \mathcal{H}^{\circ s}$. Then $\overline{\mathcal{H}}^s \subseteq \mathcal{U}^c$. Since \mathcal{U} is ss-set and intersection of two s-open set in X is s-open set, then $\overline{\mathcal{H}}^s$ is Ms-closed. Therefore $\mathcal{U}^c = X$ or $\mathcal{U}^c = \overline{\mathcal{H}}^s$. Hence $\mathcal{U} = \emptyset$ or $\mathcal{U} = \mathcal{H}^{\circ s}$. Therefore $\mathcal{H}^{\circ s}$ is ms-open set. Then \mathcal{H}^c is sw-set. Conversely, let \mathcal{H}^c be sw-set and \mathcal{F} be a closed set with $\overline{\mathcal{H}}^s \subseteq \mathcal{F}$. Then $\mathcal{F}^c \subseteq \mathcal{H}^{\circ s}$. Since \mathcal{H}^c is

sw-set, then $\mathcal{H}^{\circ s}$ is ms-open. Therefore $\mathcal{F}^c = \emptyset$ or $\mathcal{F}^c = \mathcal{H}^{\circ s}$. Hence $\mathcal{F} = X$ or $\mathcal{F} = \overline{\mathcal{H}}^s$. Therefore $\overline{\mathcal{H}}^s$ is Ms-closed set. Then \mathcal{H} is ss-set.

Example (3.10): Suppose (R, t) is a tp-s set, where R is the set of all real numbers, with the topology; $t = \{A \in R : 1 \in A\} \cup \{\emptyset\}$. Then $\{1\}$ is an open set and a set of words, but it isn't a closed set or an ss set. $R - \{1\}$ is also considered an ms-closed set and an ss-set, but not an ms-open set or a swimming set.

Theorem(3.11): Let (X, t) be a tp-s and $A \subseteq X$. Then if A is sw-set, $B \subseteq X$ such that $B^{\circ s} \neq \emptyset$ and $B \subseteq A$ then $A^{\circ s} = B^{\circ s}$.

Proof:

Let A be sw-set, $B \subseteq X$ such that $B^{\circ s} \neq \emptyset$ and $A \subseteq B$. Then $A^{\circ s}$ is ms-open set and $B^{\circ s} \subseteq A^{\circ s}$. Therefore $A^{\circ s} = B^{\circ s}$.

Theorem (3.12): If (ε, t) is a tp-slot. If A is an ss set, F is an s-closed set, and if $\neg(A) \wedge s \cup F \neq \varepsilon$, then $F \subseteq \neg(A) \wedge s$.

Proof:

Given that A is ss-set, then \overline{A}^s is Ms-closed set, also due to $(\overline{A}^s \cup F)$ is s-closed set, $\overline{A}^s \subseteq (\overline{A}^s \cup F)$ then $(\overline{A}^s \cup F) = \overline{A}^s$. Hence $F \subseteq \overline{A}^s$.

Corollary (3.13): Suppose (ε, t) is a tp-set that contains the intersection of any two open sets in ε as a sub-set. If A is a set of swaps, G is an open set that contains $A \wedge (\varepsilon s)$ and is therefore included in A . If A is a set of swaps that includes the empty set as a component, then A is said to be empty..

Proof:

Since A is an s-set, $A^{\circ s}$ is an Ms-door set. Since $(A \wedge (\varepsilon s)) + G$ is an s-open set, $A \wedge (\varepsilon s) + G$ is also an s-open set. Since $A^{\circ s} \cap G$ is not empty, therefore $A^{\circ s} \supseteq G$.

Corollary(3.14): If \mathcal{F}, \mathcal{B} are ss-sets in a tp-s (X, t) such that $\overline{\mathcal{F}}^s \cup \overline{\mathcal{B}}^s \neq X$ then $\overline{\mathcal{F}}^s = \overline{\mathcal{B}}^s$.

Proof:

Let \mathcal{F}, \mathcal{B} be ss-sets such that $\overline{\mathcal{F}}^s \cup \overline{\mathcal{B}}^s \neq X$. Then $\overline{\mathcal{B}}^s$ is s-closed set. Therefore, $\overline{\mathcal{B}}^s \subseteq \overline{\mathcal{F}}^s$. By the same way we can prove $\overline{\mathcal{F}}^s \subseteq \overline{\mathcal{B}}^s$. Then $\overline{\mathcal{F}}^s = \overline{\mathcal{B}}^s$.

Corollary (3.15): If \mathcal{U}, \mathcal{V} are w-sets in a tp-s (X, t) with $\mathcal{U}^{\circ s} \cap \mathcal{V}^{\circ s} \neq \emptyset$, then $\mathcal{U}^{\circ s} = \mathcal{V}^{\circ s}$.

Proof:

Let \mathcal{U}, \mathcal{V} be w-sets such that $\mathcal{U}^{\circ s} \cap \mathcal{V}^{\circ s} \neq \emptyset$. Then $\mathcal{V}^{\circ s}$ is s-open set. Therefore, $\mathcal{U}^{\circ s} \subseteq \mathcal{V}^{\circ s}$. By the same way we can prove $\mathcal{V}^{\circ s} \subseteq \mathcal{U}^{\circ s}$. Then $\mathcal{U}^{\circ s} = \mathcal{V}^{\circ s}$.

Theorem (3.16): Let (μ, t) be the tp-slot, A be the set of slots, and x be in $A \wedge (0^\circ)$. Next, if s is an open set with s-open sets W , if x is not in W , then $A \wedge (\varepsilon s)$ is a sub-set of W^c .

Proof:

Suppose that x participates in the rotation around poles. Also, for every ensemble of s W , if x is not in W , then $A \wedge (\varepsilon s)$ is a sub-set of W^c .

Corollary (3.17): Let (ε, t) be a tp-suple, and A be an ssu.ble, such that $x \in \neg(A) \wedge s$. Next, if s is a closed set that contains x , then F^c is included in the set of all possible openings of the form $A \wedge s$.

Proof:

Let A be a set of ss wor.ds, and $x \notin A^\wedge$ s. Next, if x is in a s-cl.osed set F , then $F \not\subseteq \neg(A)^\wedge$ s. As a res.ult, F^\wedge c is incl.uded in the inte.rior of A 's sph.ere of influ.ence. Theo.rems (3.18): Let (ε, t) be a tp-.slot. If ε has two subs.ets A and B that are conta.ined in t , and the inters.ection of two open sets in ε is sti.ll an open set, then A^\wedge (°s) $\not\subseteq B$. Additi.onally, if A and B have the prop.erty that A^\wedge (°s) $\cap B = \emptyset$, then A and B are said to be adja.cent in t .

Pro.of: Let A be a set of car.ds with a specific distri.bution. Then A^\wedge (°s) is an open set that is sm-complete. Sin.ce A^\wedge (°s) $\cap B$ is conta.ined in A^\wedge (°s) and A^\wedge (°s) $\not\subseteq B$, there.fore A^\wedge (°s) $\cap B = \emptyset$.

Corol.lary (3.19): Let (ε, t) be a tp-s.ystem, such that the inters.ection of two s-o.pen sets in ε is sti.ll an s-o.pen set. If ε has a set A with an s-closed compo.nent B , and $B \not\subseteq \neg(A)^\wedge$ s, then $\neg(A)^\wedge$ s $\cup B = \varepsilon$.

Proof:

Theo.rems (3.20): Let (ε, t) be a tp-s set, and A and B be s-o.pen sets in ε . If A is a set of swa.ps, and B is not emp.ty and B is incl.uded in A , then B is a set of swa.ps.

Pro.of: Let A be a set of size s , and B be a non-.empty open set of size t , and $B \subseteq A$. Next, A^\wedge (°s) is an open set that is ms-co.mplete. If G is an s-o.pen set, then G is incl.uded in B^\wedge (°s). Then G is incl.uded in A^\wedge (°s), there.fore G is eit.her emp.ty or A^\wedge (°s) is equ.al to G . If A^\wedge (°s) is equ.al to G , then G is said to be B^\wedge (°s). This impl.ies that B is a ser.ies of orde.red sets (so).

Theo.rems (3.21): Let (ε, t) be a set of sor.ted collec.tions (tp-s), and A and B be s-o.pen sets in ε . If A is a set of collec.tions of obje.cts that are orde.red by some prop.erty, and the.re is no elem.ent in A that is smaller than B , then B is a set of orde.red collec.tions (so).

Pro.of: Let A be a set of sor.ted collec.tions (sw), and B be a non-.empty s-o.pen set that is not in A . Next, A^\wedge (°s) is a colle.ction of sets that are orde.red by the.ir memb.ers' nam.es (ms-.close). Let G be an open spa.ce, and $G \subseteq B^\wedge(0^\circ)$. Then G is incl.uded in A^\wedge (°s), there.fore G is eit.her emp.ty or A^\wedge (°s) is equ.al to G . If A^\wedge (°s) is equ.al to G , then G is said to be B^\wedge (°s). This implies that B is a ser.ies of orde.red sets (so).

Note (3.22): If (ε, t) is a tp-s.ystem, and A is a sub.set of it. If A is an ss set, then the set of its elements, $\neg(A)^\wedge$ s, is also an ss set. If A is a set of swa.ps, then A^\wedge (°s) is also a set of swa.ps.

Corol.lary (3.23): Let (ε, t) be a tp-s.ystem, and A, B be par.ts of it. If A is an ss set, and $A \cup B \neq \varepsilon$, then $A \cup B$ is an ss set.

Corol.lary (3.24): Let (ε, t) be a tp-s.ystem, and A, B be compo.nents of t . If A is a set of swa.ps, and if $A \cap B$ is not empty, then $A \cap B$ is also a set of swa.ps. Theo.rem (3.25): Let H be a non-.empty sub.set of the tp set (ε, t) that satis.fies the follo.wing condi.tions: the inters.ection of any two s-open sets in ε is also an s-o.pen set. As a res.ult, the follo.wing state.ments are synon.ymous.

If H is an s-o.pen set, then it is an s-w set.

If H is an s-cl.osed set, then it is an ss-.set.

Pro.of: Theo.rems (3-9) and (3-14) are suppo.rtive of this pro.of.

Theo.rem (3.26): Let H be a proper sub.set of $tps(\varepsilon, t)$ that inter.sects any two s-open sets in ε is also an s-o.pen set. As a res.ult, the follo.wing state.ments are synerg.istic:

If H is an ms-.open set, then it is also an sw-.set.

If H is a ms-co.mplete set, then it is an ss-.set.

Pro.of:

The theo.rems (3-6) and (3-9) endo.rse this pro.of.

Theo.rem (3.27): Let \mathcal{U} be a sub.set of tp-s (ε, t) that includes the intersection of any two s-o.pen sets in ε as well. After that, the following statements are synonymous:

If \mathcal{U} is a set of car.ds with an ace as its fir.st elem.ent, then \mathcal{U} is an open set with a ms-.root.

If \mathcal{U} is an ss-.set, then it is an ms-b.ound set.

Pro.of:

The theo.rems (3-6) and (3-9) endo.rse this pro.of.

Theo.rem (3.28): Let (ε, t_y) be a subs.pace of tp-s (ε, t) that is open and clo.sed. If A is an s-cl.osed set in ε , and $\varepsilon \not\subseteq \neg(A)^\wedge s$ and $A \cap \varepsilon$ is not emp.ty, then $A \cap \varepsilon$ is also an s-cl.osed set in ε .

Pro.of:

Let F be an s-cl.osed set in ε , and y (or c) be a poi.n.t in F. Then F is an s-cl.osed set in ε , and A is a sub.set of F conta.ining y (or c). As a res.ult, A is also an s-cl.osed set in c. Sin.ce A is an s-set, its compl.ement, $A^\wedge c$ or F, is also an s-set. If $F \cup \varepsilon^\wedge c = \varepsilon$, then $F = \varepsilon$. If the set of param.eters assoc.iated with A is incl.uded in the set of parameters associated with F and if s y is a new param.eter assoc.iated with A and y is a new param.eter assoc.iated with F and s y . As a res.ult, y is incl.uded in the set $A \cap y$) $^\wedge(s y) = F$. As a res.ult, $A \cap Y$ is an ss-.set in Y.

Theo.rems (3.29): Let (Y, t_y) be a clo.sed subs.pace of tp-s (X, t) .

If A is an ss-.set in ε , then eit.her $\neg(A)^\wedge s$ or $\neg(A)^\wedge s \cup \varepsilon = \varepsilon$.

Pro.of:

The pro.of is deri.ved from the set of rul.es $\neg(A)^\wedge s \subseteq \neg(A)^\wedge s \cup \varepsilon$.

Theo.rems (3.30): Let (ε, t_y) be a subs.pace of tp-s (ε, t) . If A is a set in the enviro.nment of size 3, and if A is also a set in the enviro.nment and if A and ε inter.sect, then A is also a set in the enviro.nment.

Pro.of:

Assu.ming that G is a sub.set of t_y that satis.fies the following condi.tions: G is a sub.set of $\llbracket (A \cap \varepsilon) \rrbracket^\wedge(\varepsilon)$. Then G is the squ.are root of ε , and $G = G \cap \varepsilon \subseteq (A \cap \varepsilon)^\wedge(\varepsilon) \cap \varepsilon^\wedge(\varepsilon) = (A \cap \varepsilon)^\wedge(\varepsilon) = A^\wedge(\varepsilon) \cap \varepsilon^\wedge(\varepsilon) \subseteq A^\wedge(\varepsilon)$. As a res.ult, G is equ.al to $A^\wedge(\varepsilon)$ or G is emp.ty. If $G = A^\wedge(\varepsilon)$, then $(A \cap \varepsilon)^\wedge(\varepsilon) = A^\wedge(\varepsilon) \cap \varepsilon^\wedge(\varepsilon) = A^\wedge(\varepsilon) \cap \varepsilon^\wedge(\varepsilon) = A^\wedge(\varepsilon) = G$. As a res.ult, $A \cap \varepsilon$ is the square root of ε .

Theo.rem (3.31): Let (Y, t_y) be a subs.pace of tp-s (X, t) that is open. If A is a set of ang.les in degrees, then $A^\wedge(\varepsilon) \subseteq Y$ or $A^\wedge(\varepsilon) \cap Y = \emptyset$.

Pro.of:

The concl.usion is derived from $A^\wedge(\varepsilon) \cap Y \subseteq A^\wedge(\varepsilon)$.

Theo.rem (3.32): Let (Y, t_y) be a clo.sed subs.pace of tp-s (X, t) . If eve.ry none.mpty, pro.per, and ope.n-s sub.set of X is a set of sw in X, then eve.ry none.mpty, pro.per, and open-s sub.set of Y is also a set of sw in Y.

Pro.of: Let U' be an ope.n-s sub.set of B. Then U is an open s- sub.set of ε . As a res.ult, U is a set in ε . Sin.ce $U \cap \varepsilon$ is diffe.rent from ε and $U \cap \varepsilon$ is diffe.rent from noth.ing, by Theo.rem (3-32), U is a sub.set of ε .

Theo.rems (3.33): Let (ε, t_y) be a subs.pace that is both open and clo.sed in tp-s (ε, t) . If eve.ry non-.empty pro.per sub.set of ε that is not emp.ty is an sset of ε , then every non-empty proper sub.set of ε that is not emp.ty is an sset in ε .

Pro.of:

Supp.ose F is a non-.empty s-cl.osed sub.set of ε . Then F is a s-com.plete sub.set of ε . As a res.ult, F is a sub.set of ε . Sin.ce $F \cap Y \neq \emptyset$ and $F \cap Y \neq \emptyset$, accor.ding to Theo.rem (3-31), F is a set that is ss in ε .

4- Some applications employ semi-intense and semi-fragile sets:

Defin.ition (4.1): Let $f: \varepsilon \rightarrow \varepsilon$ be a transfo.rmation from the fir.st to the sec.ond type of ε . Aft.er that, the proc.ess is refe.rred to as follows:

SS-st.rongly maxim.ized conti.nuous (ssM-co.ntinuous for sho.rt), if eve.ry ss-.set A in ε , $f^\wedge(-1)(A)$ is an Ms-c.losed set in ε .

Maxi.mal ss-st.rongly conti.nuous (mss-co.ntinuous for sho.rt), if eve.ry ss-c.losed set A in ε , $f^\wedge(-1)(A)$ is an ss-.set in ε .

SS-.very indecipherable (ss-in.effable for sho.rt), if eve.ry ss-.set A in ε , $f^\wedge(-1)(A)$ is an ss-.set in ε .

SS-very indecipherable (ss-in.effable for sho.rt), if eve.ry ss-.set A in ε , $f^\wedge(-1)(A)$ is an ss-.set in ε .

Theo.rem (4.2): Let $f: \varepsilon \rightarrow \varepsilon$ be a mapp.ing from a tp-s on ε to a tp-s on ε . Next, the follo.wing two state.ments are equa.lly val.id:

The stock's perfor.mance is consi.dered good.

Eve.ry sub.set of A in ε that is conta.ined in the set A is an ms-.open set on ε .

Theo.rem (4.3): Let $f: \varepsilon \rightarrow \varepsilon$ be a mapping from a trip.od's poi.nt of view on ε to a trip.od's poi.nt of view on ε . Next, the follo.wing two state.ments are equa.lly val.id:

f is Ms-con.tinuous.

Every ms-.open set A in ε , whi.ch is conta.ined in an open set of size at most ms, is also an ms-.open set on ε .

Theo.rem (4.4): Let $f: \varepsilon \rightarrow \varepsilon$ be a mapp.ing from a tp-s on ε to a tp-s on ε . Next, the follo.wing two state.ments are ident.ical:

The mean.ing of ss is ambig.uous.

Eve.ry subsy.stem of A in ε is also a subsy.stem of A in ε .

Theo.rem (4.5): Let $f: \varepsilon \rightarrow \varepsilon$ be a mapp.ing from a tp-s set in ε to a tp-s set in ε . Then:

If f is conti.nuous, then it is undec.ided.

If f is undec.ided, then it is Ms-pe.riodic.

As a res.ult, if f is ssM-pe.riodic, then it is Ms-peri.odic.Proof:

The pro.of is comp.lete, sin.ce eve.ry sM-co.vered set is an ss set.

Exam.ple: (4.6) Let the set of param.eters be $\varepsilon = \{k, v, l\}$, whe.re $t = \{\{k\}, \emptyset, \varepsilon\}$, and $\varepsilon' = \{k, v\}$, whe.re $t' = \{\{k\}, \emptyset, \varepsilon\}$. Then $\{l\}$ is an ss-.set in ε , but not a ssM-co.mplete set. Let $f: (\varepsilon, t) \rightarrow (\varepsilon, t')$ be a func.tion that satis.fies the follo.wing prope.rties: if t is grea.ter than or equ.al to k , then $f(k) = t$, and if t is smal.ller than k , then $f(k) = t$. Then, f is ss-indet.erminate, but not ssM-con.tinuous, beca.use for the ss set $\{v\}$ in ε , the func.tion $f^\wedge(-1) \{v\}$ is equ.al to k , and k is not an sM-c.losed set in ε .

Theo.rem (4.7): Let $f: \varepsilon \rightarrow \varepsilon$ be a map from the tp-s set ε to the tp-s set Y , whe.re ε is defi.ned as foll.ows: eve.ry ss set is an sM-c.losed set. If f is una.ble to be reso.lved, then f is consi.dered to be ssM-con.stinuous.

Pro.of:

The conclusion is derived from the premises. Example (4.8): Let $\varepsilon = \{k, v, l\}$, where $t = \{\{k, v\}, \emptyset, \varepsilon\}$, $Y = \{k, v, l, h\}$. Let $t' = \{k, v\}$, \emptyset , and Y . Then $\{l\}$ is an open set in Y , but not a closed set with respect to sm . Let $f: (X, t) \rightarrow (Y, t')$ be a function that satisfies the following properties: $f(k) = k$, $f(v) = v$, and $f(l) = l$. Then f is ssM -continuous, but not ss -indeterminate, because for the ss set $\{h\}$ in Y , $f^{\wedge}(-1)(h) = \emptyset$ is present, while $f^{\wedge}(-1)(h) = \emptyset$ is not an sm -closed set in X .

Theorem (4.9): Let $f: \varepsilon \rightarrow \varepsilon$ be a function from the tp -sphere to the tp -sphere, where the property that every ss set is sm -closed is satisfied by ε . If the letter f is Mss -continuous, then it is ss -indistinct.

Proof: The proof is derived from the premises directly.

Example (4.10): In [Example (4-8)], f is continuous. Since f is not indeterminate in this example, and according to the theorem (4-5), every ssM -continuous function is also indeterminate, therefore, f is not ssM -continuous.

Theorem (4.11): Let $f: \varepsilon \rightarrow \varepsilon$ be a function from the tp -sphere of ε to the tp -sphere of ε , and let ε , ε be an sm -closed ss -set. If f is continuous, so is also ssM .

Proof:

The proof is derived from the premises directly.

Theorem (4.12): Let (ε, t) and (ε, t') be two tp -sets, and $f: (\varepsilon, t) \rightarrow (\varepsilon, t')$ be a surjective, closed, and continuous function. If A is an ss -set in ε , then so is also $f(A)$.

Proof:

Allow A to be an element of the set ε . Next, $A^{\wedge}s$ is an Ms -complete set in ε . Let F be a closed set in ε that contains the origin of the rotation, and let A be a set of the form $[0, 1] \times [0, 1]$. Then A is included in F , and thus A is also included in the set of points of the form $[0, 1] \times [0, 1]$. Since f is a continual function, the set of all possible values for f is included in the set of all possible values for $b(-1)(F)$. Since A is an s -set, the set of indices of the form $(1, 0, 1)$ or $(0, 1, 0)$ is empty or the set of indices of the form $(1, 0, 1)$ or $(0, 1, 0)$. If $b(-1)(F) = \{\}$ and if f is a surjective map, then $f = \{\}$. If $f^{\wedge}(-1)(F) = \neg A^{\wedge}s$ and f is a surjective, continuous, and closed function, then $F = \neg (f(A))^{\wedge}s$. As a result, the set of Ms 's is closed. As a result, $f(A)$ is an ss -set.

Corollary (4.13): Let (ε, t) and (γ, t') be two tp -sets, and $f: (\varepsilon, t) \rightarrow (\gamma, t')$ be a bijective, closed, and continuous function. If A is a set in the environment of ε , then $f(A)$ is a set in the environment of γ .

Proof: Let A be a set of size at least 3 in the environment of the set ε . Then $A^{\wedge}c$ is an ss -set in ε . According to Theorems (4-12), the set of ss in $A^{\wedge}c$ is a set of ss in Y . As a result, so is $Y - f(A^{\wedge}c)$ a set of ss in the set. Since f is surjective, so is its range, which is a set of solutions to the system of equations in the form of a vector in R^4 .

Theorem (4.14): Let (r, t) and (Y, t^{\wedge}) be two tp -sets, and $f: (r, t) \rightarrow (Y, t^{\wedge})$ be a bijective, open, and continuous function. If A is a set of ss in Y , then $f^{\wedge}(-1)(A)$ is also a set of ss in r .

Proof:

Allow A to be a collection of ss 's in Y . Then $\neg A^{\wedge}s$ is a Ms -complete set in Y . Let F be a closed set in U that is also s -closed, and let $\neg (f^{\wedge}(-1)(A))^{\wedge}s$ be a sub-set of F . Then $f^{\wedge}(-1)(A)$ is a sub-set of F , and since f is surjective, A is a sub-set of $f(F)$. Since f is an s -closed function, the domain of its action is contained in the set $f(F)$. Since the set of Ms 's is closed in Y , $f(F) = \emptyset$ or $f(F) = \neg A^{\wedge}s$. If the set of friends of F is empty, then F is also empty. If $f(F) = \neg A^{\wedge}s$ and f is a surjective, open, and continuous function, then $F = f^{\wedge}(-1)(f(F)) = f^{\wedge}(-1)(\neg A^{\wedge}s) = \neg (f^{\wedge}(-1)(A))^{\wedge}s$. As a result, $f^{\wedge}(-1)(A)$ is an ss set in E .

Corollary (4.15): Alowing for two different tp-s, and a bijective, open, and continuous function between them, we have the following: (ε, t) and (ε, t') are both s-tp's, and $(\varepsilon, t) \rightarrow (\varepsilon, t')$ is a continuous, s-open, and bijective function. If A is a subset of the set of numbers ε , then the set $f^{\wedge}(-1)(A)$ is also a subset of the set of numbers ε .

Pro.of:

Assuming A is a member of the set Y . Then $A^{\wedge}c$ is a set in the ss set. As a result, according to Theorem (4-14), $f^{\wedge}(-1)(A^{\wedge}c)$ is a set of size 1 in the domain of ε . As a result, the set of numbers $\varepsilon - (f^{\wedge}(-1)(A^{\wedge}c))$ is a set of measure zero in the set of numbers ε . As a result, $f^{\wedge}(-1)(A)$ is a set in E that is contained in the interior of the circle.

Theorem (4.16): Let (ε, t) , (ε, t') , and (μ, t'') all be tp-continuous. Then:

If the function $f:(\varepsilon, t) \rightarrow (\varepsilon, t')$ is ssM-constant and the function $g:(\varepsilon, t) \rightarrow (\mu, t'')$ is Ms-constant, then the function $g:(f:(\varepsilon, t) \rightarrow (\mu, t'')$ is also Ms-constant.

If the function $f:(\varepsilon, t) \rightarrow (\varepsilon, t')$ is continuous and the function $g:(\varepsilon, t) \rightarrow (\mu, t'')$ is also continuous, then $g:(f:(\varepsilon, t) \rightarrow (\mu, t''))$ is also Ms-continuous. The map that associates (θ, t) with (θ, t') is sM-continuous, therefore $g(\theta, t')$ with (θ, t) is ss-inde.terminant and Ms-continuous.

If the slope of $(t, \text{If } t)$ is the same as that of $(u, \text{If } u)$, then $g(t, t') = g(u, t')$ and sM is continuous. As a result, the transition from g to Ms is indeterminate and the transition from Ms to g is also indeterminate.

If (Y, t^{\wedge}) is Ms's continuous and sM's continuous, then $g \circ f:(\theta, t) \square (Z, t^{\wedge})$ if $f:(\theta, t) \rightarrow (Z, t^{\wedge})$ is ss-inde.terminant. As a result, if $(\theta, t) \rightarrow (Z, t^{\wedge})$ is ss-inde.terminant, and $(Y, t^{\wedge}) \rightarrow (Z, t^{\wedge})$ is Ms-continuous, then $g \circ f:(\theta, t) \rightarrow (Z, t^{\wedge})$ is also Ms-continuous.

If $(\theta, t) \rightarrow (Y, t^{\wedge})$, and the set $g:(Y, t^{\wedge}) \rightarrow (Z, t^{\wedge})$ is ss-inde.terminant, and $g:(Y, t^{\wedge}) \rightarrow (Z, t^{\wedge})$ is sM-continuous, and if $(X, t) \rightarrow (Z, t^{\wedge})$ is ss-inde.terminant and... Ms-continuous.

If $(X, t) \rightarrow (Y, t^{\wedge})$ is ss-inde.terminant and $g:(Y, t^{\wedge}) \rightarrow (Z, t^{\wedge})$ is ss-inde.terminant, then $g \circ f:(X, t) \rightarrow (Z, t^{\wedge})$ is ss-inde.terminant and Ms-continuous.

Pro.of:

The pro.of is as follows: every Ms-closed set is equivalent to an ss-set, and by Theorem... <4-5> Every Ms-closed set can be represented by an ss-set, thus the pro.of is complete.

Example: (4.17) has the form Let $\varepsilon = Z = \{k, v, l, h\}$ and $\varepsilon = \{k, v, l\}$, where $t = \text{Let } \{\{k, v\}, \varepsilon, \emptyset\}$, $t' = \{\{k, v\}, \varepsilon, \emptyset\}$ and $t'' = \{\{k, v\}, Z, \emptyset\}$. Let $f:(\varepsilon, t) \rightarrow (\varepsilon, t')$, where $f(k) = k$, $f(v) = v$, $f(l) = f(h) = l$, and $g:(\varepsilon, t') \rightarrow (\varepsilon, t'')$, where $g(k) = k$, $g(v) = v$, $g(l) = l$. Then f is sM-constant and s-inde.terminant. G is called Ms-continuous, and g is also called Ms-continuous, but $g \circ f$ is not m-inde.pendent because (h) is an s-set in Z , but $(g \circ f)^{\wedge}(-1)(h) = \emptyset$ is not an s-set in ε . By the theorem's description, $g \circ f$ is also not sM-te.mpered.

Example (4.18): Let $\varepsilon = \varepsilon = Z = \{k, v, l, h\}$, where $t = \{\{k, v\}, \{k\}, \varepsilon, \emptyset\}$, $t' = \{\{k, v\}, \{k, v, l\}, \varepsilon, \emptyset\}$, $t'' = \{\{k, v, l\}, Z, \emptyset\}$. Alowing (ε, t) to evolve to (ε, t') , and letting $g:(\varepsilon, t') \rightarrow (Z, t'')$, is what enables us to define the identity function. Then f is indecomposable and Ms.en.dless, and g is also indecomposable and Ms.en.dless, but $g \circ f$ is not Ms.en.dless because $\{h\}$ is a set of s. It's set in Y , but $(g \circ f)^{\wedge}(-1)(h) = h$ isn't in E . Ms-closed.

Example: (4.19) has the form of a list of 4 elements, each of which is of the form $\{k, v, l, h\}$ and has a corresponding element of the form $\{k, v, l\}$. t has the form $\{\{k, v\}, \{k\}, \varepsilon, \emptyset\}$, t' has the form $\{\{k, v\}, \{k, v, l\}, \varepsilon, \emptyset\}$, and t'' has the form of a list of 4 elements, each of which is of the form $\{k, v, l, h\}$. Let $f:(\varepsilon, t) \rightarrow (Y, t'')$, where $f(k) = k$, $f(v) = v$, $f(l) = l$, $f(h) = h$, and $g:(Y, t'') \square (Z, t'')$,

where $g(k)=k$, $g(v)=v$, $g(l)=g(h)=l$. Then f is indecomposable, $M_s..end$, g is indecomposable, but $g \circ f$ is not $M_s..end$ because $\{l\}$ is an s -set in Z , but $[(g \circ f)]^{(-1)}(l)=\{l,h\}$ is not M -closed in ε .

Example: (4.20) has the form $t=\{\{k,v\},\{k\},X,\emptyset\}$, $t^{\wedge}=\{\{k,v\},\{k,v,l\},Y,\emptyset\}$ and $t^{\wedge\prime}=\{\{k,v\},Z,\emptyset\}$. The definition of g is as follows: $g(k)=k$, $g(v)=g(l)=v$, $g(h)=l$. Then M_s is consistent, s is ambiguous, and $G \circ f$ is consistent but not consistent, because $\{l\}$ is M 's closed domain in Z , but $[(g \circ f)]^{(-1)}(l)=\emptyset$ is not a set in X . According to Theorem 4.5, $g \circ f$ is not s (inequality) nor sM (end).

Theorem(4.21): Let (ε, t) , (ε, t') , and $((\mu, t'')$ be sets that are tp -s, and let ε have the property that every set is M -closed. Then:

If the matrix: $(\varepsilon, t) \rightarrow (\varepsilon, t')$ is M_s -continuous, and the vector: $(\varepsilon, t') \rightarrow (\mu, t'')$ is sM -continuous, then the matrix: $g: (\varepsilon, t) \rightarrow (\mu, t'')$ is also sM -continuous.

If the matrix: $(\varepsilon, t) \rightarrow (\varepsilon, t'')$ is indecomposable, and the vector: $(\varepsilon, t) \rightarrow (\varepsilon, t'')$ is continuous, then the matrix: $g: (\varepsilon, t) \rightarrow (\varepsilon, t'')$ is also continuous.

If $f: (\varepsilon, t) \rightarrow (\varepsilon, t'')$ is s -indeterminate, and $g: (\varepsilon, t) \rightarrow (\varepsilon, t'')$ is also s -indeterminate, then $g: f: (\varepsilon, t) \rightarrow (\varepsilon, t'')$ is also sM -continuous.

Theorem (4.22): Let (ε, t) , (ε, t') , and (μ, t'') be sets that are tp -s, and let ε have the property that every s set is M -closed. Then:

If $(\varepsilon, t) \rightarrow (\varepsilon, t')$ is M_s -continuous, and $(g, t) \rightarrow (\mu, t'')$ is M_s -continuous, then $(g \circ f): (\varepsilon, t) \rightarrow (\mu, t'')$ is M_s -continuous.

If $(\varepsilon, t) \rightarrow (\varepsilon, t')$ is M_s -continuous, and $(g, t) \rightarrow (\mu, t'')$ is M_s -continuous, then $(g, t): (\varepsilon, t) \rightarrow (\mu, t'')$ is M_s -continuous. Since s is a set that is indeterminate, it is therefore M_s -constantly.

Proof:

This can be demonstrated using the supposition and theorem (4-5).

Theorem (4.23): Let (ε, t) , and let tp -s, such that every set s is an M -closed set. Then:

If the matrix: $(\varepsilon, t) \rightarrow (Y, t')$ is sM -constant, and the vector: $(Y, t') \rightarrow (Z, t'')$ is M_s -constant, then the matrix: (g) is sM -constant, therefore $(g): (f)$ is sM -constant, which is therefore an s -indeterminate set. If the matrix equation (3.1) has an indeterminate solution, and the matrix function (3.2) is M_s -continuous, then the function (3.3) is s -unsolvable.

Proof:

This can be demonstrated by the hypotheses and theorem 4.5.

Theorem (4.24): Let (ε, t) , (ε, t') , and (ε, t'') be tp -s sets, where t and t' satisfy that every s set is M -closed. If $g: (\varepsilon, t)$ is M_s -continuous, and if $g: (\varepsilon, t') \rightarrow (\varepsilon, t'')$ is s -unsolvable, then $g: (\varepsilon, t) \rightarrow (Z, t'')$ is s -unsolvable. $, t^{\wedge''}$ is sM -continuous.

Proof:

The proof is derived from the premises directly.

Theorems (4.25): Let (ε, t) , (ε, t') , and (Z, t'') be tp -s sets, and let ε and Z have the property that every s set is M -closed. If the system has a solution that involves the following change of variables: $(\varepsilon, t) \rightarrow (\varepsilon, t')$ is m -unsolvable, and $g: (\varepsilon, t') \rightarrow (Z, t'')$ is M_s -continuous, then $g: (\varepsilon, t'')$ is sM -continuous.

Proof:

The proof is derived from the premises directly.

Theo.rem (4.26): Let (ε, t) , (ε, t') , and (μ, t'') be sets of tp-s, where ε and μ satisfy the property that every set of s is M-closed. If the mapping $f:(\varepsilon, t) \rightarrow (\varepsilon, t')$ is continuous, and the mapping $g:(\varepsilon, t') \rightarrow (\mu, t'')$ is also continuous, then $g:(\varepsilon, t'')$ is sM-continuous, which implies that $g:(\varepsilon, t)$ is also s-indeterminate.

5. Spaced across the sky

Definition (5.1): A set of tp-s A is said to be connected if it does not contain the ss set A or the sw set B such that the intersection of the domains of the two sets is empty, that is, if $U^{\wedge}(\circ s)$ and $V^{\wedge}(\circ s)$ are both empty.

Theo.rem (5.2): Let ε be a tp-s (ε, t) set that contains a set A that is both a sw-set and a set B that is a ss-set. Additionally, $\llbracket A \rrbracket^{\wedge}(\circ s) \not\subseteq \neg B^{\wedge}s$. After that, ε isn't connected to the other side.

Proof: Since $\llbracket A \rrbracket^{\wedge}(\circ s) \not\subseteq \neg B^{\wedge}s$, then $\llbracket A \rrbracket^{\wedge}(\circ s) \not\subseteq \llbracket B \rrbracket^{\wedge}(\circ s)$ and $\neg A^{\wedge}s \not\subseteq \neg B^{\wedge}s$. Since A is a set of swaps and $B^{\wedge}(\circ s)$ is an open set that contains $A^{\wedge}(\circ s)$, according to Theo.rem (3-18), $A^{\wedge}(\circ s) \cap B^{\wedge}(\circ s) = \emptyset$. Since B is a set of ss's, and $A^{\wedge}s$ is a closed set, and $A^{\wedge}s \not\subseteq B^{\wedge}s$, by Corollary (3-19), $\overline{A} \cup \overline{B} = \varepsilon$. As a result, ε is not connected to the other end.

Theo.rem (5.3): Let tp be a set that contains a sub-set of A , where A is both a set of ss's and a set of sw's. After that, ε isn't connected to the other side.

Proof:

Let A be a set that is both an ss set and a sw set. As a result, by Theo.rem 3-9, $\llbracket A \rrbracket^{\wedge}c$ is a set that is both s-connected and sw-connected. It's obvious that $A^{\wedge}(c^{\wedge}(\circ s))$ is greater than $A^{\wedge}(\circ s)$. Then, by Theo.rem 3.16, $\llbracket A^{\wedge}c \rrbracket^{\wedge}(\circ s) \cap A^{\wedge}(\circ s) = \emptyset$. If the set of indices is partitioned into two sets, then the first set, $\neg(A^{\wedge}c)^{\wedge}s$, is equal to the second set, $\neg A^{\wedge}s$, which is contradictory to the fact that A is an s-connected set. As a result, according to the theorem (), $\neg A^{\wedge}s \cup \neg(A^{\wedge}c)^{\wedge}s = \varepsilon$. As a result, ε is not connected to the other end.

Theo.rems (5.4): Let (ε, t) and (ε, t') be two tp-s, and let $f:(\varepsilon, t) \rightarrow (\varepsilon, t')$ be a bijective, open, and continuous function. If ε is connected via the swap channel, then so is it connected via the swap channel as well.

Proof:

Suppose that there are sets A and B in ε that are both s- and sw-sets. Then $\llbracket A \rrbracket^{\wedge}(\circ s)$ and $\neg A^{\wedge}s$ are both sets that are empty. As a result, by Theo.rem 4.14, $f^{\wedge}(-1)(B)$ is an s-set in ε , and by Corollary 4.15, $f^{\wedge}(-1)(A)$ is a w-set in ε . Since f is an s-open set and continues to be an s-continuous set, therefore $(f^{\wedge}(-1)(A))^{\wedge}s + (f^{\wedge}(-1)(B))^{\wedge}s = f^{\wedge}(-1)(A) + f^{\wedge}(-1)(B) = f^{\wedge}(-1)(Y) = X$. Since f is surjective, open, and continuous, we have $\llbracket (f^{\wedge}(-1)(A)) \rrbracket^{\wedge}(\circ s) \cap \llbracket (f^{\wedge}(-1)(A)) \rrbracket^{\wedge}(\circ s) = f^{\wedge}(-1)(\llbracket A \rrbracket^{\wedge}(\circ s)) \cap f^{\wedge}(-1)(\llbracket B \rrbracket^{\wedge}(\circ s)) = f^{\wedge}(-1)(\llbracket A \rrbracket^{\wedge}(\circ s)) \cap \llbracket B \rrbracket^{\wedge}(\circ s) = f^{\wedge}(-1)(\emptyset) = \emptyset$. As a result, ε is not connected to the other end of the stick, this contradicts the theory. As a result, ε is connected to the other end.

Theo.rems (5.5): Let (ε, t) and (ε, t') be two tp sets, and let $f:(\varepsilon, t) \rightarrow (\varepsilon, t')$ be a bijective, closed, and continuous function. If ε is connected via a string of length 1, then so is ε' .

Proof: Suppose that there are w-sets A and s-sets B in ε such that $\llbracket (A) \rrbracket^{\wedge}(\circ s) \cap \llbracket (B) \rrbracket^{\wedge}(\circ s) = \emptyset$ and $\neg A^{\wedge}s \cup \neg B^{\wedge}s = \varepsilon$. As a result, by Theo.rem 4.12, $f(B)$ is an ss-set in ε , and by Corollary 4.13, $f(A)$ is an sw-set in ε . Since f is surjective, closed, and continuous, $\neg A^{\wedge}s \cup \neg B^{\wedge}s = f(\neg A^{\wedge}s) \cup f(\neg B^{\wedge}s) = f(\neg A^{\wedge}s) \cup \neg B^{\wedge}s = f(X) = Y$. Since f is surjective, closed, and continuous, $\llbracket (f(A)) \rrbracket^{\wedge}(\circ s) \cap \llbracket (f(B)) \rrbracket^{\wedge}(\circ s) = f(\llbracket A \rrbracket^{\wedge}(\circ s)) \cap f(\llbracket B \rrbracket^{\wedge}(\circ s)) = f(\llbracket A \rrbracket^{\wedge}(\circ s)) \cap \llbracket B \rrbracket^{\wedge}(\circ s) = f(\emptyset) = \emptyset$. As a result, Y is not connected to the other side, this contradicts the theory. As a result, we can deduce that X is connected to the sw-net.

6- Conclusions:

We keep in mind the ideas of semi-minimal open and semi-maximal closed sets in this study. We present and investigate new types of sets that arise from these ideas, such as semi-strong and semi-weak sets. Characteristics and properties of the new types of sets. This future research will now have a new avenue to investigate how the concepts of semi-strong and semi-weak sets are used.

References:

1. N . Levine Semi open set and semi Continuity in topological spaces . Amer .Math .Mon.thly (1963).
2. Alas B. Khalaf and Haji M. Hasan (2012) "On some new maximal and minimal sets via semi-open " . Acta Universitatis Apulensis (32)pp. 103.-109.
3. Nakaoka F. and Oda N. (2001), Some application of minimal open sets, International journal of mathematics and mathematical sciences,27(8), pp.4.71-478.
4. Nakaoka F. and Oda N.(2003), Some properties of maximal open sets. International journal of mathematics and mathematical sciences , 21,pp.1331.-1340.
5. Ittanagi , B.M.,and Siddapur G. P . ,(2018) On maximal semi continuous functions in topological spaces, International Journal of Engineering & Technology, 7(4.10),pp. 904.-907.
6. Rosas. E., Carpinero,C., Salas.-Brown, M. and Sambra, J., (2017), Minimal open sets on generalized topological space, Proyecciones Journal of Mathematics, 36(4), pp.739.-751.
7. Mahdi, H. and Nasar, F. (2017),On minimal and maximal regular open sets, Mathematics and Statistics, 5(2), pp.78-83 .
8. Raad Aziz Hussain Al-Abdulla "on strong Weak sets in a topological space " Journal of interdisciplinary Mathematics,2021.