

UNVEILING SKIN DISEASE: ADVANCEMENTS IN CONTOUR DETECTION TECHNIQUES FOR ENHANCED DETECTION AND DIAGNOSIS

Daksh Dalal

*P.G. Student, Department of CSE, Sat Kabir Institute of Technology and Management,
Haryana, India*

Meenakshi Arora

Assistant Professor, of CSE, Sat Kabir Institute of Technology and Management, Haryana, India

Abstract:

Skin lesion detection is a critical task in dermatology for the early diagnosis and treatment of skin cancer. This paper presents a novel approach combining median filter preprocessing and active contour modeling to enhance the accuracy and efficiency of skin lesion detection. The proposed method consists of two primary stages: preprocessing using a median filter to reduce noise and improve image quality, followed by lesion segmentation utilizing active contour models. In the preprocessing stage, the median filter is applied to the dermoscopic images to suppress noise while preserving the edges of lesions. This step ensures that the subsequent segmentation process operates on high-quality images, which is crucial for precise boundary detection. The second stage employs active contour models, also known as snakes, which iteratively evolve to fit the contours of the skin lesion. The active contour model is initialized around the region of interest and driven by internal and external forces derived from the image data. These forces guide the contour towards the lesion boundaries, enabling accurate segmentation even in the presence of irregular shapes and varying contrast levels. Experimental results demonstrate that the combination of median filtering and active contour models significantly improves the detection and segmentation of skin lesions compared to traditional methods. The proposed method exhibits robustness against noise, enhances edge preservation, and accurately delineates complex lesion boundaries. This approach holds promise for integration into automated diagnostic systems, potentially aiding dermatologists in the early and accurate detection of skin cancer.

Keywords: Skin lesion detection, median filter, active contour models, image preprocessing, segmentation, dermatology, automated diagnostic systems.

INTRODUCTION: Skin cancer, particularly melanoma, represents a significant health concern worldwide due to its high incidence and potential for fatality if not detected early. Timely diagnosis is crucial for effective treatment and improved survival rates. Dermoscopy, a non-invasive imaging

technique, has become a standard tool in dermatology, providing detailed visualization of skin lesions that aids in the diagnostic process. However, manual interpretation of dermoscopic images is time-consuming, subjective, and requires considerable expertise. Consequently, there is a growing interest in developing automated skin lesion detection methods using image processing techniques to assist dermatologists and enhance diagnostic accuracy.

Image processing plays a vital role in the automated analysis of dermoscopic images by improving image quality, segmenting lesions, and extracting critical features for diagnosis. Various techniques have been explored for this purpose, including filtering, edge detection, and segmentation methods. Among these, median filtering and active contour models stand out for their effectiveness in preprocessing and segmentation tasks, respectively.

Median filtering is a popular nonlinear technique used to remove noise from images while preserving important edge details. This is particularly beneficial for dermoscopic images, where noise reduction without blurring the lesion boundaries is essential for accurate analysis. Studies have shown that median filtering enhances the quality of medical images, facilitating more precise subsequent processing steps[1].

Active contour models, also known as snakes, are widely used for image segmentation due to their ability to adapt to complex shapes and boundaries. These models iteratively evolve to fit the contours of objects of interest by minimizing an energy function that balances internal smoothness and external image forces. The adaptability of active contours makes them particularly suitable for segmenting skin lesions, which often exhibit irregular shapes and varying contrast[2].

In this paper, we propose a novel skin lesion detection method that integrates median filtering and active contour models to improve the accuracy and robustness of lesion segmentation. The proposed approach involves two main stages: preprocessing dermoscopic images with a median filter to reduce noise and enhance image quality, followed by the application of active contour models to accurately segment the skin lesions. This combination leverages the strengths of both techniques, ensuring clear lesion boundaries and precise segmentation even in challenging imaging conditions.

The remainder of this paper is organized as follows: Section 2 reviews related work in skin lesion detection using image processing techniques. Section 3 outlines the methodology of the proposed approach, detailing the implementation of median filtering and active contour models. Section 4 presents experimental results and evaluates the performance of the proposed method. Finally, Section 5 concludes the paper and discusses potential directions for future research.

RESEARCH BACKGROUND

The early detection of skin cancer, especially melanoma, is crucial for successful treatment and improved patient outcomes. Automated methods for skin lesion detection using image processing have gained significant attention due to their potential to aid dermatologists in the diagnostic process. This literature review focuses on the use of active contour models, overlaying techniques, and filtering methods for skin cancer detection.

Authors in [3] enhanced the active contour model by introducing the Gradient Vector Flow (GVF) snake, which improves the capture range and ensures better convergence to boundary concavities. This improvement is particularly beneficial for segmenting complex skin lesions. More recent studies have applied variations of active contour models to enhance segmentation accuracy. For instance, [2] combined the GVF snake with texture and color features to improve melanoma detection in dermoscopic images.

Overlaying techniques involve superimposing segmented images or features onto the original images to highlight areas of interest. This approach is often used in conjunction with other image processing methods to enhance visualization and assist in the diagnosis. For example, overlaying

the boundaries detected by active contour models onto the original dermoscopic image allows dermatologists to easily identify the lesion's extent and shape.

Authors in [4] demonstrated the effectiveness of overlaying segmentation results on dermoscopic images, which helped in the visual assessment of lesion boundaries. They used a combination of morphological operations and active contours for segmentation, followed by overlaying the results on the original image for better visualization. This technique not only aids in diagnosis but also provides a visual tool for evaluating the performance of segmentation algorithms.

Combining active contour models, overlaying techniques, and filtering methods has shown promising results in improving skin cancer detection. For example, [5] proposed a method that combines median filtering for noise reduction, an active contour model for segmentation, and overlaying techniques for visual assessment. This integrated approach leverages the strengths of each method, resulting in enhanced segmentation accuracy and better visualization of lesion boundaries.

Recent advancements in machine learning and deep learning have also been integrated with these traditional image processing techniques. For instance, [6] incorporated deep convolutional neural networks with traditional filtering and active contour methods, achieving significant improvements in skin lesion detection and classification.

PROPOSED METHODOLOGY

Stage 1: Initially we have applied Mean and Median Filters to the Image.

Noise reduction is a critical preprocessing step in image processing, particularly in medical imaging, where the clarity of the image is crucial for accurate analysis. The median filter is a popular choice for this task because of its effectiveness in reducing noise while preserving edge details, which are essential for the accurate segmentation and analysis of skin lesions in dermoscopic images[7].

The median filter is a nonlinear digital filtering technique used to remove noise from an image. Unlike linear filters, which can blur edges, the median filter preserves the edges of the image by replacing each pixel's value with the median value of the intensities in the neighborhood of that pixel. This approach effectively removes impulsive noise, such as salt-and-pepper noise, without significantly blurring the edges.

MATLAB provides a convenient environment for implementing and testing image processing algorithms, including the median filter. The following steps outline how to apply a median filter to reduce noise in a dermoscopic image using MATLAB:

1. **Read the Image:** Load the dermoscopic image into MATLAB.
2. **Apply Median Filter:** Use the medfilt2 function to apply the median filter to the image.
3. **Display the Results:** Visualize the original and filtered images to compare the noise reduction.

It works by moving a window (often a square) across the image, and for each position of the window, replacing the center pixel value with the median value of the pixel intensities within the window.

Given an image I with dimensions $M \times N$, the median filter operates as follows:

1. **Window Selection:** Define a window size $w \times w$, where value of w is an odd integer.
2. **Window Movement:** Move the window across each pixel in the image I .
3. **Median Calculation:** For each pixel $I(x, y)$, replace it with the median value of the pixel intensities within the $w \times w$ window created at (x, y) .

Mathematically, the median filter operation can be described as follows:

$$I_{filtered}(x, y) = median\{ I(i, j) | (i, j) \in W(x, y) \} \quad (1)$$

- Where $I_{filtered}(x, y)$ is the value of the pixel at location (x, y) in the filtered image.
- $W(x, y)$ is the set of coordinates within the $w \times w$ window centered at (x, y).
- median denotes the median value of the set of pixel intensities within the window.

Stage 2: Use of Active Contour for Image Segmentation

Image segmentation is a critical step in automated skin cancer detection systems, aiming to accurately delineate the boundaries of skin lesions. Among various segmentation techniques, active contour models, also known as snakes, have gained prominence due to their adaptability and precision in capturing complex shapes. This section explores the use of active contour models for segmenting skin lesions, emphasizing their role in enhancing the accuracy of skin cancer detection [8].

Active contour models, introduced by [2] are used to detect object boundaries within an image. The key idea is to evolve a curve (the contour) under the influence of internal forces, which enforce smoothness, and external forces, which drive the curve towards the object boundaries. The evolution of the contour is governed by an energy minimization process.

The energy function E of an active contour can be expressed as:

$$E = \int \left[\alpha(s) \left| \frac{d\mathbf{v}(s)}{ds} \right|^2 + \beta(s) \left| \frac{d^2\mathbf{v}(s)}{ds^2} \right|^2 + P_{image}(\mathbf{v}(s)) \right] ds \quad (2)$$

Where, $\mathbf{v}(s)$ represents the contour, $\alpha(s)$, $\beta(s)$ are weights controlling the elasticity and rigidity of the contour, respectively. P_{image} is the image potential that attracts the contour towards the object boundaries.

The use of active contour models for skin cancer detection involves several steps, typically including preprocessing, initialization of the contour, and iterative evolution of the contour to fit the lesion boundaries accurately.

1. **Preprocessing:** This step includes noise reduction and contrast enhancement to improve the quality of the dermoscopic images. Techniques such as median filtering are commonly used (Gonzalez & Woods, 2018).
2. **Initialization:** The initial contour is placed around the region of interest. This can be achieved manually or through automated methods like thresholding and morphological operations.
3. **Contour Evolution:** The contour is iteratively evolved under the influence of internal and external forces. The goal is to minimize the energy function, thereby fitting the contour to the lesion boundaries accurately[9].

Advantages of Active Contour Models

Adaptability: Active contour models can adapt to various shapes and sizes of lesions, making them suitable for segmenting irregularly shaped skin lesions.

Edge Preservation: The models are effective in preserving the boundaries of lesions, which is crucial for accurate diagnosis.

Flexibility: Active contour models can be combined with other techniques, such as texture analysis and color information, to improve segmentation accuracy.

Gradient Vector Flow (GVF) Snakes

Authors in [3] proposed an extension to the traditional snake model known as Gradient Vector Flow (GVF) snakes. GVF snakes improve the capture range and ensure better convergence to boundary concavities by diffusing the gradient of the edge map.

The GVF snake model defines a new external force field $v(x, y)$ that minimize the energy function.

$$E_{\text{GVF}} = \iint \left(\mu \left(|\nabla v|^2 \right) + |\nabla f|^2 |v - \nabla f|^2 \right) dx dy \quad (3)$$

Where f is the edge map of the image, and μ is a regularization parameter.

Stage 3: Use of Overlay Method to separate defective area from clean area

Overlay methods in image processing are used to highlight specific regions of interest within an image by superimposing segmentation results on the original image. This technique is particularly useful in medical imaging, such as in the detection and visualization of skin melanoma, where it is essential to clearly distinguish between defective (melanoma) and clean (healthy) areas [10].

The overlay method involves the following steps:

1. **Image Acquisition:** Obtain the dermoscopic image of the skin.
2. **Preprocessing:** Enhance the image quality through filtering techniques.
3. **Segmentation:** Use an appropriate segmentation algorithm to identify the melanoma.
4. **Overlay:** Superimpose the segmented region onto the original image to highlight the melanoma.

Advantages of Overlay Methods

Enhanced Visualization: The overlay method provides a clear visual distinction between the melanoma and healthy skin, aiding in diagnosis and analysis.

Diagnostic Aid: By highlighting the melanoma region, dermatologists can more easily assess the extent and characteristics of the lesion.

Evaluation of Segmentation Accuracy: Overlaying the segmented region on the original image allows for visual evaluation of the segmentation algorithm's performance.

Given an overlay Image I with $M \times N$ dimensions.

A binary mask M indicating the segmented region, where $M(x,y) = 1$, for pixels belonging to the ROI (e.g., melanoma) and $M(x,y) = 0$ for all other pixels.

An overlay color $C = (R,G,B)$ to highlight the affected area. The goal is to create an overlay image I_{overlay} where the ROI is specified color C .

SIMULATION ENVIRONMENT & RESULTS:

We have implemented our method in MATLAB 2014a. A MATLAB implementation of the proposed method is given as follows:

% Read the Image

```
image = imread('dermoscopic_image.jpg'); % Replace with the path to your image
```

```

image_gray = rgb2gray(image); % Convert to grayscale if the image is in color
% Preprocessing: Apply Median Filter
filtered_image = medfilt2(image_gray, [3 3]);
% Initialize the contour
% This can be done manually or using automatic initialization methods
mask = roipoly(filtered_image); % Example of manual initialization
% Active Contour Segmentation
iterations = 100; % Number of iterations
segmented_image = activecontour(filtered_image, mask, iterations, 'Chan-Vese');
% Create a binary mask from the segmented image
binary_mask = segmented_image > 0;
% Create an RGB version of the original grayscale image
image_rgb = cat(3, image_gray, image_gray, image_gray);
% Overlay the segmented region in red
overlay_image = image_rgb;
overlay_image(:,:,1) = image_rgb(:,:,1) + uint8(binary_mask) * 255; % Red channel
% Display the Results

```

We have taken different types of images, some of which having lesion or other skin disease. While some has no disease at all. Our proposed method find out the border of the lesion in a skin and specify whether the disease is detected or not.

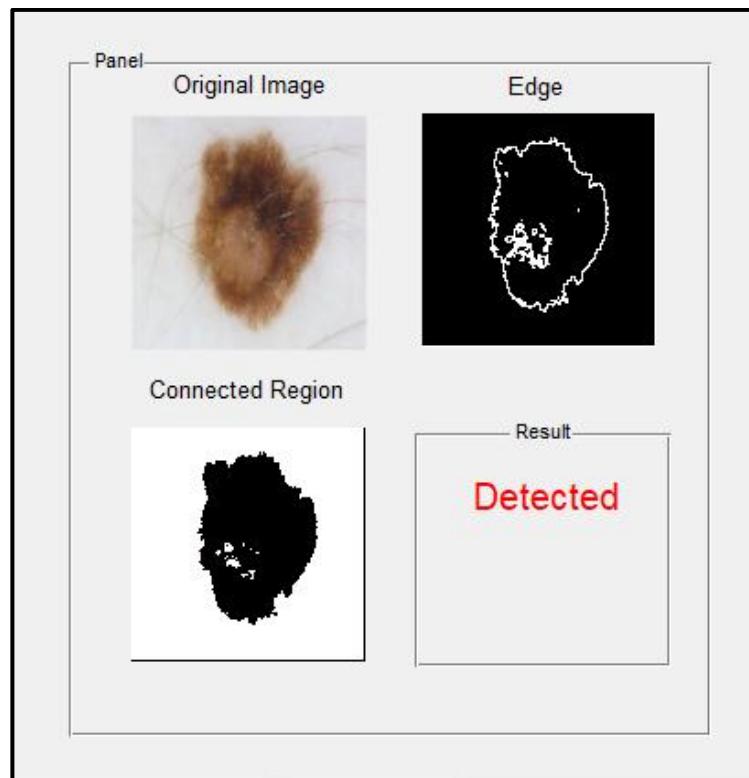


Figure 1: Detected Skin Disease Eczema Border

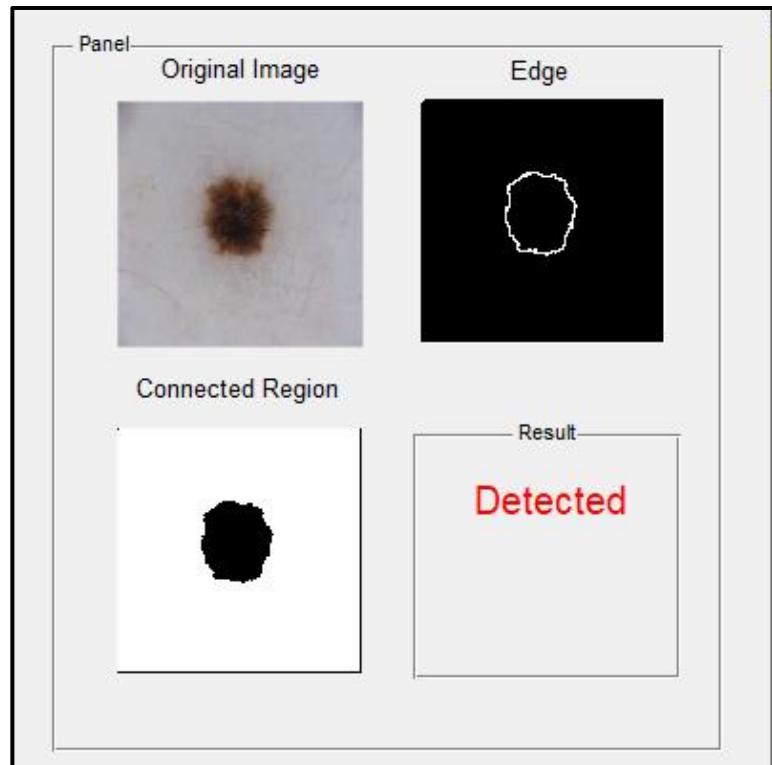


Figure 2: Detection of Melanoma Border

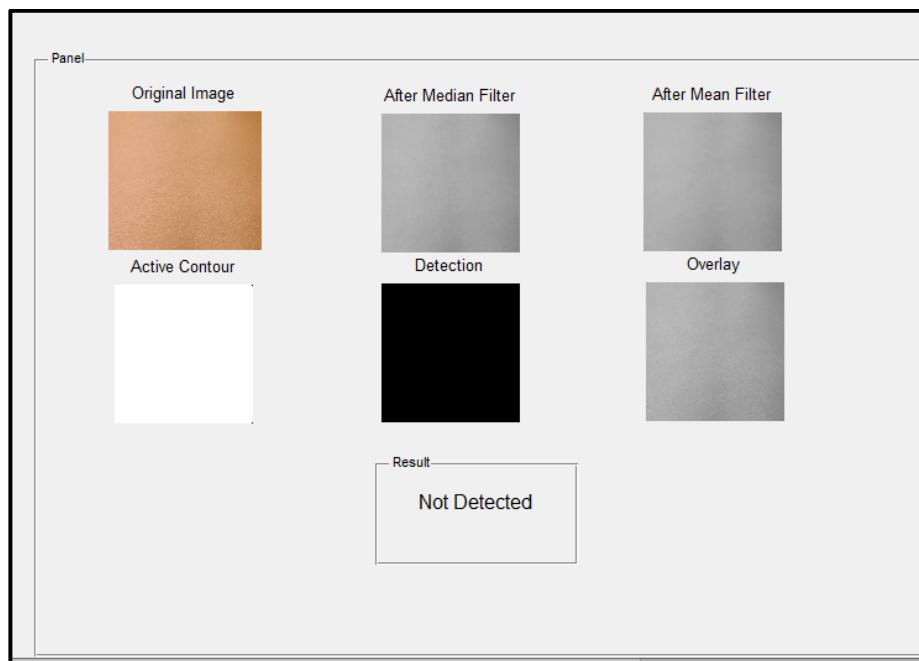


Figure 3: Absence of Skin Disease

CONCLUSION

The median filter is an effective tool for noise reduction in dermoscopic images, preserving important edge details while removing noise. MATLAB's built-in functions make it straightforward to implement and apply this filter, facilitating the preprocessing of medical images for improved analysis and diagnosis. By reducing noise and preserving edges, the median filter enhances the quality of the image, thereby aiding in the accurate segmentation and analysis of skin lesions. Active contour models are powerful tools for the segmentation of skin lesions, offering precise and

adaptable methods for delineating complex lesion shapes. Their ability to preserve edge details while accurately capturing lesion boundaries makes them invaluable in automated skin cancer detection systems. Continued advancements in this area, such as integrating deep learning techniques with active contour models, hold promise for even more accurate and efficient skin cancer diagnosis. The overlay method is an effective technique for separating and visualizing defective areas, such as skin melanoma, from clean areas in dermoscopic images. By combining preprocessing, segmentation, and overlay techniques, this approach enhances the clarity and accuracy of melanoma detection, providing valuable support for dermatological diagnosis and treatment planning.

REFERENCES

1. R. C. Gonzalez, *Digital image processing*. Pearson education india, 2009.
2. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” *Int. J. Comput. Vis.*, vol. 1, no. 4, pp. 321–331, 1988.
3. C. Xu and J. L. Prince, “Snakes, shapes, and gradient vector flow,” *IEEE Trans. image Process.*, vol. 7, no. 3, pp. 359–369, 1998.
4. E. Meskini, M. S. Helfroush, K. Kazemi, and M. Sepaskhah, “A new algorithm for skin lesion border detection in dermoscopy images,” *J. Biomed. Phys. Eng.*, vol. 8, no. 1, p. 117, 2018.
5. M. E. Celebi, N. Codella, and A. Halpern, “Dermoscopy image analysis: overview and future directions,” *IEEE J. Biomed. Heal. informatics*, vol. 23, no. 2, pp. 474–478, 2019.
6. J. Kawahara and G. Hamarneh, “Fully convolutional neural networks to detect clinical dermoscopic features,” *IEEE J. Biomed. Heal. informatics*, vol. 23, no. 2, pp. 578–585, 2018.
7. P. Tschandl *et al.*, “Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks,” *JAMA dermatology*, vol. 155, no. 1, pp. 58–65, 2019.
8. D. N. H. Thanh, L. T. Thanh, U. Erkan, A. Khamparia, and V. B. S. Prasath, “Dermoscopic image segmentation method based on convolutional neural networks,” *Int. J. Comput. Appl. Technol.*, vol. 66, no. 2, pp. 89–99, 2021.
9. S. Lankton and A. Tannenbaum, “Localizing region-based active contours,” *IEEE Trans. image Process.*, vol. 17, no. 11, pp. 2029–2039, 2008.
10. R. Kaur, H. GholamHosseini, R. Sinha, and M. Lindén, “Automatic lesion segmentation using atrous convolutional deep neural networks in dermoscopic skin cancer images,” *BMC Med. Imaging*, vol. 22, no. 1, p. 103, 2022.