

THE EFFECT OF HIGH-INTENSITY PHYSICAL EFFORT ON CERTAIN VARIABLES OF THE ELECTRICAL ACTIVITY OF THE MUSCLES ACTING ON THE KNEE JOINT, BLOOD ACIDITY LEVEL (PH), AND THEIR RELATIONSHIP TO THE ACCURACY OF PERFORMING THE DIAGONAL SPIKING SKILL IN VOLLEYBALL PLAYERS AT THE UNIVERSITY OF GILGAMESH

Dr. Tariq Abduljabbar Hussein

General Directorate of Education in Anbar

Tareqabduljabar@gmail.com

Introduction and Significance of Research

The world has witnessed significant scientific and technical progress in the application of modern scientific and technological foundations in the sports field. This progress has contributed to raising the scientific level in general and the sports level in particular. This is evident in many sports, including volleyball, which has seen substantial development in the way it performs and implements its offensive and defensive skills. This development is due to the positive application of many sciences, such as physiology, anatomy, training, and other aspects of physical education (Al-Dulaimi and Dhanoun, 1991).

The study and analysis of these skills from their physiological aspects help in achieving accurate and objective results that enhance skill performance. Among these offensive skills is the Spike Skill in volleyball, which is the primary offensive weapon in modern volleyball. This skill is crucial because of its impact on the defensive formations of the opposing team, preventing the ball from reaching the prepared player easily or securing a direct point. Reaching the upper levels of performance requires knowledge of the variables that contribute to mastering the skill, understanding the exact details of the movement and its causes, and executing the movement with economic effort (Aref, 2014).

One of the key requirements for improving performance in the sports field, and a main concern for coaches and specialists in volleyball, is to find advanced and modern educational methods. These methods should contribute to enhancing the physical, skill, functional, and motor capabilities of

volleyball players, especially in offensive skills. The perfect crystallization and mastery of offensive technical skills by players during the game force the opposing team to resort to defense, particularly when the skill in question is the Spike Skill in volleyball. This skill is one of the factors that affect the opposing team, allowing the attacking team to score a point with less effort and without reaching the stage of fatigue, which could otherwise impact performance levels.

The game of volleyball is one of the anaerobic sports that differ in nature from many other team sports in terms of its fast rhythm and the sequence of motor performances exchanged between defense and continuous attack throughout the match. Volleyball is characterized by speed, strength, and endurance of performance. Players continuously transition from defense to attack and vice versa, performing various skills such as passing and continuous jumping movements during the execution of all types of spike skills, and rapidly returning to defense. Additionally, players perform muscular work with maximum strength and speed, despite the fatigue resulting from lactic acid buildup in the muscles. This requires continuous energy consumption during the match and energy compensation to sustain performance effectively throughout the match duration.

Therefore, it is essential to study the variables that may be affected by continuous performance over a long period and maximum effort. Among the most important variables are those related to the electrical activity of muscle groups involved in the motor stages of the spike skill, from the momentary push at the moment of uplift. To study the essential aspects of the requirements of motion, we must avoid subjective estimates in evaluating movements. Scientific sources emphasize the importance of studying aspects related to movement time, force, distance, trajectory of the center of gravity, and body mass.

Biochemical indicators of the body must also be identified both at rest and during high-intensity physical exertion throughout the match, whether in laboratory settings or on the field. This involves studying the diversity and changes in responses that occur as a result of physical effort during the match rounds. One of these indicators is the level of blood acidity, which is directly affected by the intensity of physical exertion. This, in turn, leads to an increased buildup of lactic acid in the muscles, exceeding the rate of its elimination and resulting in high blood acidity.

Hence the importance of research lies in identifying the impact of high intensity physical effort on the electrical activity of the muscles working on the knee joint and the level of blood acidity and what is the relationship between them and the level of performance accuracy of the spike skill and since the study of physiology is linked in most of its laws and measurements using laboratory or field devices and requirements to achieve correct and accurate measurements so require the adoption of devices that are compatible and objective work so that they lead to reaching the goal to be studied.

Research problem:

Through the observation of the researchers of the training units and matches for volleyball players and the fact that the researchers are part of the volleyball players of the Gilgamesh University team, they found a clear impact on the level of performance after a period of the beginning of the training unit or match, especially in the case of continuity in the performance of the spike skill, and this is what prompted researchers to research this topic as a problem worth studying.

Where the problem of research is summarized in the nature of the effort made by volleyball players, especially in the skill of overwhelming beating through the speed of the course of play, which may not be stopped only for several seconds, as well as the rapid transition from the state of attack to defense and vice versa, which in turn forces the player to give his maximum energy, which may lead to many physiological changes and biochemical changes within the blood, which in turn may affect the level of performance for the players. This prompted the researchers to study the effect of a metered physical effort of high intensity that simulates what happens during the course of the match and the training units of anaerobic events on some variables of electrical activity and biochemical

variables of blood in order to identify the relationship between these variables and the accuracy of the performance of the Diagonal Spike.

Research Objectives:

The research aims to:

1. Identify the extent of the effect of high-intensity physical effort on some variables of electrical activity of the players of the spike skill of volleyball for the Gilgamesh University team.
2. Identify the extent of the effect of high-intensity physical effort on the level of lactic acid for the players of the spike skill of volleyball of the Gilgamesh University team.
3. Identify the extent of the effect of high-intensity physical effort on the level of blood acidity of the players of the spike skill of volleyball of the Gilgamesh University team.
4. Identify the extent of the impact of high-intensity physical effort on the level of accuracy of the performance of the Diagonal Spike of volleyball for the Gilgamesh University team.
5. Identify the relationship between some variables of electrical activity and biochemical variables (lactic acid, blood acid level) and the accuracy of the performance of the Diagonal Spike before the effort and after the effort of the players of the Gilgamesh University team.

Research hypotheses:

1. There are statistically significant differences in some variables of electrical activity between the results of measurements before the effort and after the effort.
2. There are statistically significant differences in the level of lactic acid between the results of the measurements before the effort and after the effort.
3. There are statistically significant differences in the level of blood acidity between the results of pre-stress and post-stress measurements.
4. There are statistically significant differences in the level of accuracy of the performance of the diagonal spike skill between the results of measurements before the effort and after the effort.
5. There is a correlation between the results of some electrical activity variables and biochemical variables (lactic acid, blood acidity level) and the accuracy of the performance of the diagonal spike skill.

Research Areas:

Human field: Gilgamesh Volleyball Team players 2023-2024.

Spatial field: The closed hall of the Faculty of Physical Education and Sports Sciences - Gilgamesh University.

Temporal Range: From 5/4/2024 to 5/5/2024

Chapter Two

Theoretical studies

Physical effort:

There are two types of physical effort, namely aerobic effort, which depends on the production of energy necessary for its implementation on oxygen, while the second type of effort is anaerobic physical effort, which does not depend on oxygen in energy production, but energy is produced in the absence of oxygen (Al-Hasso, 20011, p. 4)

Anaerobic effort:

It is the load on the human body, which is the anaerobic system that controls the supply of energy to the human body, as the anaerobic capabilities during which energy is produced without relying on oxygen, which in turn quickly leads to fatigue, where the anaerobic effort can be divided according to energy production systems into two types:

1. Anaerobic Phosphagen System

2. Lactic anaerobic system. (Othman, 2005, pp. 17, 28)

First: Anaerobic Phosphagen System:

This system is fast in energy conversion, and is considered one of the fastest energy systems in general, as this system occupies great importance as a source of energy for short and high-intensity physical work that requires a large amount of energy in a very short period of time, such as fast running, weight lifting or resistance training, and despite that, the Phosphagen System provides energy for a relatively short period of time and this system is very active at the beginning of each training, regardless of its intensity ((William et al) Al, 2012, p.32 (2005, p1567-1573, Grassi)

Muscle cells contain another molecule as a source of high energy known as phosphocreatine or creatine phosphate (PCr), and when this compound splits, a large amount of energy is released as the enzyme creatine kinase (CK) releases this energy by separating creatine phosphate into creatine, inorganic phosphate and energy, and the process of this simple pathway involves the transfer of inorganic phosphate (Pi) from creatine phosphate (PCr) to adenosine diphosphate (ADP), which leads to the production of adenosine triphosphate (ATP), due to the energy released from the breakdown of Phosphocreatine (PCr) (Kenney & al, 2015, p, 57).

It is known that the amount of ATP stores in the muscles is very small, as it is approximately 0.3 moles in women and 0.6 moles in men, so the energy generated by the ATP-PC system is limited, for example, if a player runs 100 meters at full speed, the ATP-PC phosphate stock will run out by the end of the race, and this system is essential for energy production when performing maximum muscular effort for 15 to 30 seconds, as PC material is not enough to redo ATP is built up when the activity lasts longer and the muscles resort to producing anaerobic energy via the lactic acid system. (Abdel Fattah, 2012, p. 71), (Kammash, 2011, p. 168).

Second: (Lactic Acid System):

The energy necessary for muscle contraction is produced using this system without the need for oxygen, but the source of energy here is not a (PC) but dietary glycogen, where glycogen is formed from carbohydrates that humans eat, which are transformed during digestion into glucose sugar and glucose is not stored in its simple form, but turns into a more complex form is glycogen, where the process of forming glycogen from glucose is carried out, and it is stored in the liver or muscles until it is needed, When energy is needed, glycogen is broken down and converted into glucose sugar and then into lactic acid, which helps in rebuilding the ATP (adenosine triphosphate) to produce the necessary energy, and due to the cessation of the chain of chemical reactions up to the level of lactic acid, this system is called by the same name Kenney & al, 2015, p, 56). (Zaher, 2011, pp. 193-194).

This system is also called anaerobic Glycolysis, where sugar fission occurs in the absence of oxygen, and lactic acid is the final product of this process, and when lactic acid accumulates in the muscle and blood and reaches high levels, it causes temporary fatigue and is considered a limited obstacle and a cause of early fatigue, and there is another disability related to the lactic acid system, as it is due to the lack of ATP molecules that can be reconstituted as a result of sugar fission When comparing these molecules with the amount produced in the presence of oxygen, we find that The amount of energy produced anaerobically from the fission of 180 grams of glycogen is about 3 ATP

molecules, while the aerobic fission of the same amount of glycogen produces enough energy to rebuild 39 ATP molecules. (Kammash, 2011, pp. 169-170).

Anaerobic glycolysis means the breakdown (or decomposition) of carbohydrates (sugar) anaerobically as a source of energy production to create (synthesis) of adenosine triphosphate (ATP) in muscle cells, where this process produces lactic acid (LA) and therefore this process is called the lactic acid system (LA system) and this system occurs in activities that require performance for a period of (1: 3) minutes where the stock of creatine phosphate (PC) in muscle tissue ends (Radwan, 2013, p. 51).

The speed of energy production in this system is slower than the Phosphagen system, but it is characterized by an increase in the performance period, which ranges between (30 seconds to 3 minutes), and this system is responsible for bearing performance in games with high physical effort (Mohammad, 2008, p. 226).

Electrical activity of the muscles:

Electrical activity of muscles is a technique to record changes in the electrical potential of the muscle when the nerve impulse reaches the motor nerve to the muscle causing muscle contraction, where the Electromyography (EMG) is a means of detection or physical examination and testing the safety of the locomotor system, and the electromagnography is sometimes called the science of electrical kinesiology, which is the electromyographic analysis that makes it possible to obtain an electrical signal from a muscle in the human body during the performance of movements. (Bartlett, 2007, p. 258) (Masso & al, 2010, p.p.127-136).

Electromyography (EMG) is a commonly used technique to evaluate muscle activity and its relationship to muscular strength developed during specific processes such as athletic training as well as to evaluate and identify fatigue processes that occur in response to physical activity (Steele, 2011, p.3).

The importance of Electromyography (EMG) is not limited to the field of medical diagnosis of pathological conditions and Neurological and Neuromuscular Disorders only, but also goes beyond that in benefiting from it in some biomechanical research, especially when studying the loads and force affecting the joints of the body during various movement events, or in scientific research related to the study of the analysis of walking steps in humans, especially when evaluating the performance of artificial joints implanted inside the body or for prosthetics assisting the disabled, and is also used in Physiotherapy to give vital feedback and measurement of muscular effort, as well as in the measurement of motor control, neurophysiology, movement disorders, postural control and physical therapy. (Burqa, 2014, p. 92) (Marco & et al,2012, p.6).

Muhannad Hussain and Ahmad Al-Khawaja (2010) point out that "the Electromyograph (EMG) records and analyzes the electrical activity of skeletal muscles, and it depicts and records the frequency and range during muscle contraction, and they pointed to the importance of the device in diagnosing injuries in the Peripheral Nerves and Muscle Denervation , and capturing the activity of motor units accurately" (Al-Bishtawi and Al-Khoka, 2010, p. 186).

Measurement of electrical activity is a research tool that is used to study the magnitude of muscle neural activation during training, and an increase in electrical activity within the muscles indicates an increase in muscle neural activation (Kenney et al, 2015, p, 58).

مستوى حامضية الدم (pH)

يحافظ الجسم على التوازن الحمضي- القاعدوي لبيئته الداخلية عن طريق ثلاثة آليات رئيسة هي الدارئات الكيميائية (buffers) الموجودة في سوائل الجسم، والكلية، والآلية التلقيسية. والحامض عبارة عن مركب كيميائي يتخلّى عن أيونات الهيدروجين (H^+) في المحلول ، أما القاعدة فهي عبارة عن مركب كيميائي يتخلّى عن أيونات الهيدروكسيل (OH^-) في المحلول ، أما النظام الداري فيشتمل على جزئين اثنين هما حامض ضعيف والملح الخاص بذلك الحامض الضعيف ، ففي إثناء عملية

الدرب يتفاعل الحامض مع الملح مما يسفر عن تشكيل ملح أقوى وحامض ضعف ، ويمثل مثل هذا النظام الدارئ إحدى الطرق التي تقلل فيها سوائل الجسم من حامضيتها أو قاعديتها ، ويعبر pH الدم عن قاعدية أو حموضة الدم بدلاً عن عدد أيونات الهيدروجين الموجودة فيه والرقم الناتج يشير إلى الأس الهيدروجيني أو ما يصطلح عليه pH الدم ، إن مدى pH الدم في جسم الإنسان والذي يتوافق مع متطلبات الحياة هو (7.0) إلى (7.7) في أثناء الراحة ، ويتبين التمرن البدني يتحول في قيمة pH العضلات باتجاه الحامضية فقد ينخفض بين (6.4) إلى (6.6) في أثناء التمرن البدني الشديد ، إن انخفاضاً كهذا في قيمة pH يكون مرحلياً وحسب ، لأن قدرة دارئات الجسم ومنها الدارات البروتينية داخل الخلايا وكذلك الدرب بوساطة الكلية والجهاز التنفسى ستعمل وتعيد pH إلى مستوى الطبيعي ، تحصل في أثناء التمرن القصوى ذي المدة القصيرة تغيرات كبيرة في الكيميائية الأيضية للحمضية والقاعدية وذلك أساساً عن طريق إنتاج حامض اللاكتيك ، ويسبب الجهد اللاهوائي الذي ينتج حامض اللاكتيك إلى تخفيف pH الدم والعضلات ، ويعتمد مقدار حامض اللاكتيك المنتج على زمن التمرن وشدة الجهد والكتلة العضلية المشتركة في العمل (الدباغ وآخرون, 2006, ص 296).

مهارة الضرب الساحق:

تعتبر مهارة الضرب الساحق أحدى المهارات الأساسية الهجومية في لعبة الكرة الطائرة إذ يقفز اللاعب ويضرب الكرة بسرعة من فوق الشبكة إلى ملعب المنافس وبطريقة قانونية ، وإن الهدف الأساس لهذه المهارة هو تحقيق نتيجة مباشرة حيث إنها تتطلب مركباً من التوقيت والتوازن والقوة العضلية وسرعة الحركة وبدون الميكانيكيات الصحيحة من كل هذا يعد جهداً ضائعاً. (SandorFi, 1996, ص ص 88-90).

أنواع الضرب الساحق بالكرة الطائرة :

تقسم أنواع الضرب الساحق إلى نوعين هما :

أولاً : الضرب الساحق بحسب الاتجاه ويقسم إلى نوعين هما :

◦ الضرب الساحق القطري.

◦ الضرب الساحق المستقيم (الخطي)

ثانياً : الضرب الساحق بحسب الارتفاع ويقسم إلى ثلاثة أنواع هم :

◦ الضرب الساحق العالى.

◦ الضرب الساحق المتوسط.

◦ الضرب الساحق السريع (الواطئ)

الفصل الثالث

منهج البحث واجراءاته الميدانية:

منهج البحث:

استخدم الباحثان المنهج الوصفي. لملائمة طبيعة ومشكلة البحث.

مجتمع وعينة البحث

حدد الباحثان مجتمع البحث وهم لاعبي منتخب جامعة كلامش الاهلية بالكرة الطائرة والبالغ عددهم (10) لاعبين وتم اختيار عينه البحث (8) لاعبين بالطريقة العدمية حيث شكلت نسبة (80%) من مجتمع البحث الكلي بعد أن تم إستبعاد عينة التجربة الاستطلاعية.

الوسائل والأدوات المستخدمة في البحث

وسائل جمع المعلومات

1. المصادر والمراجع العربية والإنكليزية

2. الاختبارات والقياسات

الأجهزة والأدوات المساعدة

جهاز EMG بلوتوث لقياس النشاط الكهربائي للعضلات

جهاز تحليل PH الدم وتحليل لاكتات الدم

حقن بلاستيكية مع مستلزمات طبية

- انبيب (E.d.T.A Tube) لحفظ عينات الدم
- صندوق مبرد لحفظ عينات الدم ونقلها للمختبر
- كرة الطائرة عدد (10)
- شواص
- ساعة توقيت عدد (1)
- برنامج الحقيقة الاحصائية الـ (SPSS)

إجراءات البحث الميدانية:

التجربة الاستطلاعية :

قام الباحثان في اجراء التجربة الاستطلاعية على عينة عددها (2) لاعبين من المجتمع الكلي للبحث يوم (الاربعاء) بتاريخ (2024/4/17) وذلك للتأكد من التالي:

1. معرفة المعوقات التي من الممكن مواجهتها خلال التجربة الرئيسية لعرض تلافها.
2. معرفة مدى ملائمة الاجهزة والادوات لعينة البحث.
3. تحديد الاختبارات المناسبة لإجراءات البحث.
4. معرفة مدى ملائمة الاختبارات لعينة البحث.
5. تحديد الجهد اللاهوائي المرتفع الشدة المناسب لعينة البحث.
6. معرفة مدى ملائمة الوقت المستخدم لعرض اجراء الاختبارات.
7. معرفة مدى ملائمة المكان لإجراءات البحث.

القياسات والاختبارات المستخدمة في البحث :

قياس النشاط الكهربائي للعضلات قبل وبعد اداء الجهد البدني (DE luca,1997,p.139)) .
يتم قياس النشاط الكهربائي للعضلات العاملة والمضادة على مفصل الركبة قبل وبعد الجهد البدني .

الهدف من الإختبار :

تسجيل قمة النشاط الكهربائي للعضلة رباعية الرؤوس الفخذية والعضلة ثنائية الرؤوس الفخذية للرجلين قبل وبعد الجهد البدني.

الأجهزة والأدوات :

تم استخدام جهاز Electromyograph (E.M.G) بلوتوث أمريكي الصنع .

تسجيل الدرجة :

يتم تسجيل الدرجة عن طريق تحويل إشارة كل عضلة من العضلات الأربع ووصفها بمعزل عن الأخرى ، ويتم استخراج أعلى قمة للنشاط الكهربائي للعضلات وتحويلها إلى بيانات يمكن التعامل معها إحصائيا ، ويتم ذلك من خلال التصوير وتطابق حركة اللاعب مع الإشارة الناتجة من العضلات الأربع في إثناء أداء الإختبار .

القياسات البيوكيميائية :

حيث شملت القياسات البيوكيميائية على القياسات التالية:

قياس نسبة الحامضية (pH) الدم قبل وبعد الجهد :

هدف الاختبار :

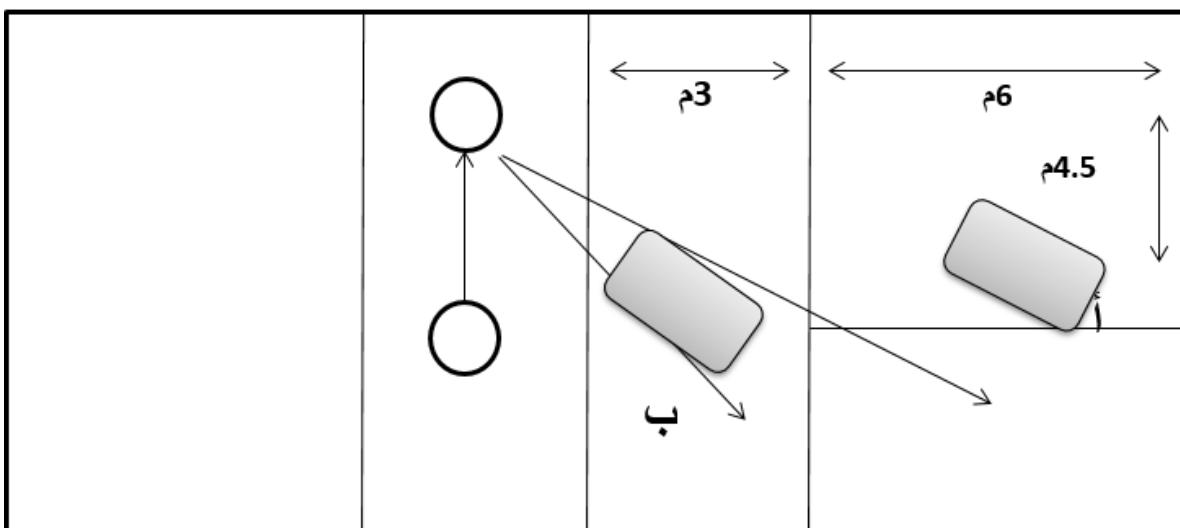
قياس نسبة الحامضية (pH) الدم و قبل وبعد الجهد وذلك من خلال الأجراءات التالية :- .

○ قبل أن يتم قيام اللاعب بأداء الجهد البدني والمتمثل بأختبار التحمل اللاهوائي لللأداء المهاري لللاعبين الضرب الساحق وبأقصى سرعة ممكنة يتم سحب عينات دم بحجم (cc5) من اللاعب لغرض إجراء التحاليل قبل الجهد و بعد الانتهاء من الجهد يتم سحب عينات دم من اللاعب مرة أخرى لغرض إجراء التحاليل بعد الجهد.

قياس لاكتات الدم قبل وبعد الجهد:

هدف الاختبار :

قياس تركيز لاكتات الدم قبل وبعد الجهد وذلك من خلال الأجراءات التالية :


- يتم سحب عينات دم بحجم (cc5) دم لغرض قياس لاكتات الدم بواسطة جهاز OPTITM LION Electrolyte Analyzer وذلك قبل الجهد .
- قيام اللاعب بأداء الجهد البدني والمتمثل بأختبار التحمل الالاهوائي للأداء المهاري للاعبين الضرب الساحق وبأقصى سرعة ممكنة وذلك من أجل الوصول إلى أعلى مستويات لاكتات الدم.
- يتم قياس لاكتات الدم وذلك بعد (5) دقائق من إنتهاء الجهد لكونها أفضل فترة لضمان خروج لاكتات إلى الدم.

الاختبارات المهارية المستخدمة في البحث:

اختبار دقة أداء الضرب الساحق القطري (عبد الدايم و طه, 1999, ص 30)

الغرض من الإختبار : قياس دقة الضرب الساحق في الاتجاه القطري

الادوات المستخدمة : 15 كرية طائرة ، ملعب كرة طائرة ، مرتبتين تمرينات توضع احدهما في ركن الملعب والثانية في المنطقة الامامية كما موضح في الشكل بحيث تكون زاويتهما على بعد 50 سم من الخط الجانبي والنهائية .

طريقة الاداء : يقوم المدرب بإعداد الكرة من مركز (3) للاعب الذي يقف في مركز (4) وعلى اللاعب أداء مهارة الضرب الساحق في الاتجاه القطري نحو الهدف المرتبة.

الشروط : لكل لاعب 10 محاولات وعلى اللاعب أداء 5 محاولات بالضرب الساحق على المرتبة الخلفية ثم أداء 5 محاولات أخرى على المرتبة الامامية والاستمرار بالاداء بأقصى سرعة ويعحسب للاعب المحاولات الصحيحة من الـ 10 محاولات المخصصة له وفقاً لقواعد التسجيل .

التسجيل وحساب الدرجات :

- 4 نقاط لكل ضربة ساحقة صحيحة تسقط فيها الكرة على المرتبة
- 3 نقاط لكل ضربة ساحقة صحيحة تسقط فيها الكرة في المنطقة (أ)
- 2 نقطتان لكل ضربة ساحقة صحيحة تسقط فيها الكرة في المنطقة (ب)
- 1 نقطة واحدة لكل ضربة ساحقة صحيحة تسقط فيها الكرة في المنطقة (ج)

الوسائل الاحصائية :

قام الباحثة باستخدام الحقيقة الاحصائية الاجتماعية SPSS ومنها تم استخراج كلاً من:

1. الوسط الحسابي

2. الانحراف المعياري

3. النسبة المئوية %

4. معامل الارتباط البسيط (بيرسون)

الفصل الرابع

عرض النتائج وتحليلها ومناقشتها

عرض وتحليل ومناقشة نتائج الفروق القبلية والبعدية بين المتغيرات قيد البحث قبل الجهد وبعد الجهد

جدول (1) عرض ومناقشة نتائج المتغيرات قيد البحث قبل الجهد وبعد الجهد

ن - 8

دالة الفروق	قيمة T الجدولية*	ع	ف	ع	س	الاختبار	وحدة القياس	المتغيرات
	المحسوبة	ع	ف	ع	س			
دال	*2.36	*3.96	123.9	174.0	121.8	493.6	قبل الجهد	مايكروفولت
					59.14	319.6	بعد الجهد	
		*9.11	54.16	174.62	43.87	466.37	قبل الجهد	مايكروفولت
					49.38	291.75	بعد الجهد	
		*3.67	96.12	124.87	29.99	545.5	قبل الجهد	مايكروفولت
					87.59	420.62	بعد الجهد	
		*6.14	67.38	146.37	31.34	635.25	قبل الجهد	مايكروفولت
					72.29	488.87	بعد الجهد	
		*11.98	2.27	9.65	0.045	1.33	قبل الجهد	Mmol/L
					2.30	10.99	بعد الجهد	
		*8.75	0.052	0.163	0.026	7.30	قبل الجهد	Mmol/L
					0.064	7.13	بعد الجهد	
		*3.70	2.67	3.50	1.48	37.75	قبل الجهد	(درجة)
					2.05	34.25	بعد الجهد	

يتضح من الجدول رقم (1) والخاص بالفروق بين القياسين القبلي والبعدي في المتغيرات قيد البحث ، وجود فروق معنوية بين القياسين القبلي والبعدي في متغير قمة النشاط الكهربائي للعضلات قبل الجهد وبعد الجهد ولصالح القياس القبلي ، حيث بلغت قيمة ت المحسوبة مابين (3.67 : 9.11) وهذه القيمة هي اكبر من قيمة ت الجدولية عند مستوى 0.05 ، وجود فروق معنوية بين القياسين القبلي والبعدي في متغير حامض اللاكتيك قبل الجهد وبعد الجهد ولصالح القياس القبلي ، حيث بلغت قيمة ت المحسوبة (11.98) وهذه القيمة هي اكبر من قيمة ت الجدولية عند مستوى 0.05 ، وجود فروق معنوية بين القياسين القبلي والبعدي في متغير حامضية الدم قبل الجهد وبعد الجهد ولصالح القياس القبلي ، حيث بلغت قيمة ت الجدولية هي اكبر من قيمة ت الجدولية عند مستوى 0.05 ، كذلك وجود فروق معنوية بين القياسين القبلي والبعدي في متغير دقة الضرب الساحق القطري قبل الجهد وبعد الجهد ولصالح القياس القبلي حيث بلغت قيمة ت المحسوبة (3.70) وهذه القيمة هي اكبر من قيمة ت الجدولية عند مستوى 0.05

من خلال العرض السابق لنتائج المتغيرات قيد البحث في الجدول (1) يتضح بأنه هناك إنخفاض في متغير النشاط الكهربائي للعضلات في القياس بعد الجهد ويعزو الباحثان سبب إنخفاض متغير النشاط الكهربائي (قمة النشاط الكهربائي) للعضلات بعد الجهد مرتفع الشدة إلى تراكم حامض اللاكتيك في العضلات مما أدى إلى خفض حامضية العضلة الناتجة عن زيادة أيون الهيدروجين وبالتالي اثر على آلية انتقال الاشارة الكهربائية بسبب تراكم كميات من أيونات الهيدروجين والتي تؤدي إلى حدوث التغيرات الكهربائية داخل العضلة أثناء الانقباض ، فمن المعروف ان الانقباض العضلي يحدث نتيجة لاستئارة من الجهاز العصبي إلى الجهاز العضلي بواسطة الأعصاب الحركية التي بدورها توصل الإشارة إلى سطح العضلة ومن ثم يحدث فرق الجهد على طرف العشاء نتيجة الفاذية في الغشاء مما يؤدي حدوث إقصى إنقباض عضلي.

حيث أنه قد تكون هناك آثار للتعب العضلي الناتج عن ممارسة التمارين الرياضية الشديدة على نقل جهد العمل على طول الألياف العضلية ، والذي يقاس بالتوصيل العصبي ، حيث أن هذه التأثيرات قد تكون مشابهة لأثار تراكم أيون الهيدروجين الذي تسببه التمارين ذات الشدة العالية والتي ترتبط بزيادة تركيز اللاكتات في العضلات نتيجة الجلوكز اللاهوائية وهذا بدوره يؤدي إلى فقدان القدرة على إنتاج قوة عضلية أكبر ، ويؤدي أيضاً إلى تغيير في إشارة النشاط الكهربائي داخل الألياف العضلية (et & Gonzalez et al, 2014, pp.389-397).

كما يتضح في الجدول (1) بأنه هناك إرتفاع في متغير حامض اللاكتيك في القياس بعد الجهد ويعزو الباحثان هذا الارتفاع إلى أن الجهد البدني اللاهوائي المرتفع الشدة أدى إلى زيادة تراكم حامض اللاكتيك نتيجة العمل اللاهوائي في غياب الاوكسجين.

كما أشار ابو العلا عبد الفتاح (2016) إلى أن التدريبات عالية الشدة تؤدي إلى إنتاج كميات كبيرة من حامض اللاكتيك كنتيجة لاستهلاك الطاقة اللاهوائية ، والذي يؤدي إلى نقل حامض اللاكتيك من العضلات إلى مجرى الدم ، ويلاحظ أنه كلما زادت شدة التدريب يرتفع تركيز حامض اللاكتيك في الدم حتى يصل pH الدم إلى 6.8 وهي نقطة الإجهاد البدني (عبد الفتاح,2016, ص 84).

كما يتضح في الجدول (1) بأنه هناك إنخفاض في متغير حامضية الدم pH في القياس بعد الجهد حيث يعزز الباحثان هذا الانخفاض إلى إرتفاع شدة الجهد اللاهوائي المستخدم للعينة الذي بدوره أدى إلى رفع قيمة حامض اللاكتيك والذي يعتبر إرتفاعه المؤثر الأساسي على خفض حامضية الدم بسبب تراكم أيون الهيدروجين الناتج من تفكك حامض اللاكتيك إلى ملح اللاكتات وأيون الهيدروجين.

كما إن إرتباط التمرين على الشدة يؤدي إلى تراكم حامض اللاكتيك بكميات عالية والذي يؤدي إلى زيادة حامضية الدم وتخفيض قيمة pH (pH) بسبب تراكم أيون الهيدروجين والذي ينفصل عن حامض اللاكتيك وتحوله إلى لاكتات (et al, 2005, & Birch (p.27).

وهذا ما أكد (هزاع محمد الهزاع 2009) أن إرتفاع تركيز حامض اللاكتيك يؤدي إلى إرتفاع حموضة النسيج العضلي حيث يعطي حامض اللاكتيك أيونات اللاكتات وأيونات الهيدروجين والتي تؤدي إلى إنخفاض الاس الهيدروجيني اي بمعنى إرتفاع الحموضة (ص 554).

كما يتضح في الجدول (1) بأنه هناك إنخفاض في متغير دقة الضرب الساحق القطري بعد الجهد البدني ويعزو الباحثان هذا الانخفاض في مستوى الاداء في دقة الضرب الساحق القطري إلى أن تأثير الجهد البدني اللاهوائي المشابه للاداء الذي قام به اللاعبين قد أدى إلى حدوث حالة من التعب في الجهاز العضلي وكذلك حدوث تعب في الجهاز العصبي نتيجة تراكم حامض اللاكتيك وارتفاع حموضة العضلة والذي بدوره أدى إلى إنخفاض النشاط الكهربائي داخل الألياف العضلية وعدم القدرة على إنتاج إقصى إنقباض عضلي لأطول فترة ممكنة ونتائج هذا التعب إنعكست سلباً على أداء اللاعبين في اختبار دقة الضرب الساحق القطري بعد الجهد.

وهذا ما يؤكده (سعد الدين 2000) إن مظاهر التعب العضلي والعصبي الناتج عن الجهد اللاهوائي المرتفع الشدة تغير من شكل الاداء الحركي وذلك من حيث إنسانية وتوافق الاداء المهاري (ص78).

عرض وتحليل ومناقشة نتائج الارتباط بين متغير النشاط الكهربائي للعضلات والمتغيرات البيوكيميائية ودقة أداء الضرب الساحق القطري قيد البحث قبل الجهد

جدول (2) يبين مصفوفة نتائج قيم علاقات الارتباط البسيط بين متغير النشاط الكهربائي للعضلات والمتغيرات البيوكيميائية ودقة أداء الضرب الساحق القطري قبل الجهد

المتغيرات	الاختبار المهاري	اليمين							
حامضية الدم pH	الاختبار المهاري	اليمين							
عامل الارتباط	العامل الارتباط	العامل الارتباط	العامل الارتباط	العامل الارتباط	العامل الارتباط	العامل الارتباط	العامل الارتباط	العامل الارتباط	العامل الارتباط

(ر) 0.271	(ر) 0.042	0.755	0.733	0.708	0.740	اختبار دقة أداء الضرب الساحق القطري
غير معنوي	غير معنوي	معنوي	معنوي	معنوي	معنوي	

قيمة (ر) الجدولية عند 0.05 (0.707) عند درجة حرية (ن - 2) - 6

يتضح من الجدول (2) والخاص بمصفوفة الارتباط بين متغير النشاط الكهربائي للعضلات والمتغيرات البيوكيميائية ودقة أداء الضرب الساحق القطري قبل الجهد بأنه :

○ توجد علاقة إرتباط بين متغير النشاط الكهربائي للعضلات ودقة أداء الضرب الساحق القطري قيد البحث حيث بلغت قيمة (ر) المحسوبة بين متغير النشاط الكهربائي للعضلات ودقة أداء الضرب الساحق القطري ما بين (0.755 : 0.708) وهي أكبر من قيمة (ر) الجدولية عند (0.05) .

○ كما يتضح من الجدول (2) بأنه لا توجد علاقة إرتباط بين المتغيرات البيوكيميائية ودقة أداء الضرب الساحق القطري حيث بلغت قيمة (ر) المحسوبة بين المتغيرات البيوكيميائية ودقة أداء الضرب الساحق القطري ما بين (0.042 : 0.271) وهي إصغر من قيمة (ر) الجدولية عند (0.05) .

عرض وتحليل ومناقشة نتائج الارتباط بين متغير النشاط الكهربائي للعضلات والمتغيرات البيوكيميائية ودقة أداء الضرب الساحق القطري قيد البحث بعد الجهد

جدول (3) يبين مصفوفة نتائج قيم علاقات الارتباط البسيط بين متغير النشاط الكهربائي للعضلات والمتغيرات البيوكيميائية ودقة أداء الضرب الساحق القطري بعد الجهد

المحضية pH الدم	المحض اللاكتيك	قمة النشاط الكهربائي للعضلة الفخذية الثانية يسار	قمة النشاط الكهربائي للعضلة الفخذية الثانية يمين	قمة النشاط الكهربائي للعضلة الفخذية الرابعة يسار	قمة النشاط الكهربائي للعضلة الفخذية الرابعة يمين	المتغيرات الاختبار المهاري
معامل الارتباط (ر)	معامل الارتباط (ر)	معامل الارتباط (ر)	معامل الارتباط (ر)	معامل الارتباط (ر)	معامل الارتباط (ر)	اختبار دقة أداء الضرب الساحق القطري
0.582	0.026	0.363	0.366	0.422	0.430	
غير معنوي	غير معنوي	غير معنوي	غير معنوي	غير معنوي	غير معنوي	

قيمة (ر) الجدولية عند 0.05 (0.707) عند درجة حرية (ن - 2) - 6

يتضح من الجدول (3) والخاص بمصفوفة الارتباط بين متغير النشاط الكهربائي للعضلات والمتغيرات البيوكيميائية ودقة أداء الضرب الساحق القطري بعد الجهد بأنه :

○ لا توجد علاقة إرتباط بين متغير النشاط الكهربائي للعضلات ودقة أداء الضرب الساحق القطري قيد البحث حيث بلغت قيمة (ر) المحسوبة بين متغير النشاط الكهربائي للعضلات ودقة أداء الضرب الساحق القطري ما بين (0.430 : 0.366) وهي إصغر من قيمة (ر) الجدولية عند (0.05) .

○ كما يتضح من الجدول (3) بأنه لا توجد علاقة إرتباط بين المتغيرات البيوكيميائية ودقة أداء الضرب الساحق القطري حيث بلغت قيمة (ر) المحسوبة بين المتغيرات البيوكيميائية ودقة أداء الضرب الساحق القطري ما بين (0.026 : 0.582) وهي إصغر من قيمة (ر) الجدولية عند (0.05) .

من خلال العرض السابق لنتائج المتغيرات قيد البحث في الجدول (2) قبل الجهد ، وجود علاقة ارتباط ذات دلالة معنوية بين متغير النشاط الكهربائي للعضلات ودقة أداء الضرب الساحق القطري قيد البحث قبل الجهد ويعزو الباحثان سبب هذه العلاقة إلى ان قدرة العضلة على الاستمرار في إنتاج اقصى قوة عضلية ولاطول فترة ممكنة والذي تبين من خلال قمة النشاط الكهربائي للعضلات الامر الذي ادى إلى المحافظة على دقة اداء الضرب الساحق القطري لللاعبين ، وهذا ما أشار إليه كل من Komi .p .v (2003) و حامد صالح مهدي (2000) يستجيب الجهاز العصبي العضلي لأنواع الانقباضات المختلفة اي مع زيادة المقاومة يزداد الانقباض العضلي نتيجة لمشاركة عدد أكبر من ألياف العضلات كما يساهم الاستمرار في التدريب الى تطوير التكيفات العصبية

حيث تكون هذه التكيفات في البداية تنسيقات عصبية عضلية تشمل تنظيم الإشارات العصبية ، ومع مرور الوقت قد تتطور لتصبح تكيفات تؤدي إلى زيادة في حجم الوحدة الحركية المشاركة في الأداء مما ينعكس إيجابياً على مستوى الدقة في الأداء.

كما يتضح من نتائج الجدول (3) بأنه لا توجد علاقة إرتباط ذات دلالة معنوية بين متغير النشاط الكهربائي للعضلات والمتغيرات البيوكيميائية ودقة أداء الضرب الساحق القطري بعد الجهد ، إذ أن علاقة الجهد اللاهوائي المرتفع الشدة الذي يستمر لفترة طويلة مع متغير النشاط الكهربائي للعضلات هي علاقة عكسية حيث أدت إلى هبوط مستوى الكفاءة البدنية نتيجة تراكم حامض اللاكتيك وارتفاع حموضة العضلات للاعبين وهذا ما تبين من خلال نتائج الاختبار التي أوضحت هبوط في مقدار قمة النشاط الكهربائي بعد الجهد البدني المرتفع الشدة وكذلك حدوث إنخفاض في مستوى دقة أداء الضرب الساحق بعد الجهد البدني المرتفع الشدة.

وهذا ما يؤكده (موفق الهيتي وإيثار 2016) إذ إن التعب والاجهاد يؤثران على عمل الجهاز العضلي والعصبي بشكل مباشر من خلال بطيء الإيماعات العصبية الصادرة من الجهاز العصبي إلى العضلات لادة المهارة مما يسبب إنخفاضاً واضحاً لذلك فأي لاعب الذي تبدو عليه علامات التعب العضلي يكون أداءه المهاري بطيئاً وغير دقيق لذلك فإن الجانب البدني يعد الداعمة الأساسية التي تبني عليها النواحي المهارية إذ إن ضعف الجانب البدني يؤدي إلى ضعف الجانب المهاري وهذا ما أشار إليه (هارة 1975) إذ يشير إلى إن التكينك الصحيح يضمن الاقتصاد في الجهد البدني للاعب عند أداء الفعالية وبالوقت نفسه الاستغلال المجدى لقابلية البدني إلى أطول فترة زمنية ممكنة.

الفصل الخامس

الاستنتاجات :

في ضوء الأهداف والفرض وعينة وإجراءات البحث توصل الباحثان إلى الاستنتاجات التالية :

1. اثر الجهد البدني المرتفع الشدة على متغير قمة النشاط الكهربائي للعضلات العاملة على مفصل الركبة حيث أدى إلى إنخفاض قمة النشاط الكهربائي للعضلات بعد الجهد.
2. اثر الجهد البدني المرتفع الشدة على المتغيرات البيوكيميائية حيث أدى إلى إرتفاع تركيز حامض اللاكتيك بعد الجهد وكذلك أدى الجهد اللاهوائي إلى رفع حامضية الدم بعد الجهد.
3. اثر الجهد البدني المرتفع الشدة على متغير دقة اداء الضرب الساحق القطري بعد الجهد حيث أدى إلى إنخفاض مستوى الاداء المهاري المتمثل بانخفاض دقة الضرب الساحق القطري بعد الجهد.
4. وجود علاقات إرتباطية معنوية بين متغير قمة النشاط الكهربائي للعضلات العاملة على مفصل الركبة ومتغير دقة اداء الضرب الساحق القطري قبل الجهد
5. عدم وجود علاقات إرتباطية معنوية بين متغير قمة النشاط الكهربائي للعضلات العاملة على مفصل الركبة والمتغيرات البيوكيميائية (حامض اللاكتيك ، حامضية الدم) ومتغير دقة اداء الضرب الساحق القطري بعد الجهد

النوصيات :

أستناداً إلى نتائج هذا البحث توصل الباحثان إلى التوصيات التالية :

1. إستخدام جميع مؤشرات النشاط الكهربائي للعضلات للتعرف على التطور الحاصل في مقدار القوة العضلية للعضلات العاملة على باقي المفاصل.
2. إستخدام المتغيرات البيوكيميائية قيد البحث كمؤشرات رئيسية في تقني البرامج التدريبية .
3. دراسة متغيرات بيوكيميائية أخرى للتعرف على مدى تأثيرها على دقة أداء الضرب الساحق القطري.
4. إستخدام المتغيرات قيد البحث للتعرف على مدى تأثيرها على المهارات الأخرى في الكرة الطائرة من أجل تطويرها.
5. استخدام إجراءات وقياسات هذا البحث بهدف تطبيقها على فعاليات رياضية أخرى.
6. ضرورة إجراء التحاليل البيوكيميائية الدورية للاعبين لمعرفة مدى تطور مستوى متابعة حالتهم من فترة إلى أخرى.

المصادر

أولاً : المصادر العربية:

1. أبو العلا أحمد عبد الفتاح ؛ فسيولوجيا التدريب والرياضة (الطبعة الأولى ، دار الفكر العربي ، القاهرة ، 2016).
2. أبو العلا أحمد عبد الفتاح ؛ التدريب الرياضي المعاصر (الاسس الفسيولوجية ، الخطة التدريبية ، تدريب الناشئين ، التدريب طوبيل المدى ، أخطاء حمل التدريب) الطبعة الأولى ، دار الفكر العربي ، القاهرة ، (2012).

3. احمد عبد الدايم و علي مصطفى طه ؛ دليل المدرب في الكرة الطائرة اختبارات - تخطيط - سجلات ، ط 1 ، دار الفكر العربي ، القاهرة ، (1999).

4. احمد عبد الغني الدباغ ، محمد توفيق عثمان ، احمد سعدي ؛ اثر تراكم جهد لا هوائي في بعض متغيرات الدم وبعض المتغيرات الوظيفية ، مجلة أبحاث كلية التربية الأساسية ، المجلد ٣ ، العدد ٣ ، جامعة الموصل (2006).

5. اكرم زكي خطابية ؛ موسوعة الكرة الطائرة الحديثة ، ط ١ ، دار الفكر للطباعة والنشر ، عمان. (1996).

6. بهاء الدين إبراهيم سلامة ، بيلوجيا الأداء الحركي (الطبعة الأولى ، دار الفكر العربي ، القاهرة ، 2016).

7. بهاء الدين إبراهيم سلامة ؛ الخصائص الكيميائية الحيوية لفسيولوجيا الرياضة (الطبعة الأولى ، دار الفكر العربي ، القاهرة ، 2008).

8. حازم موسى ، سلام جبار ؛ القدرة اللاهوائية وعلاقتها بدقة الاداء المهاري للضرب الساحق بالكرة الطائرة ، ط ١ ، مجلة القادسية لعلوم التربية الرياضية المجلد الثامن العدد الأول ، جامعة القادسية (2007).

9. حامد صالح مهدي ؛ تأثير التدريب العضلي المركزي واللامركزي في تطوير القوة القصوى الثابتة والمحركة والنشاط الكهربائي للعضلة (EMG) ، رسالة دكتوراه ، كلية التربية الرياضية ، جامعة بغداد (2000).

10. خالد أسعد العرقان ؛ تدريبات عملية للطائرة المدرسية ، غزة ، دولة فلسطين. (2007) ص 25.

11. ريان عبد الرزاق الحسو ؛ اثر جهد ال هوائي قصوى في مستوى هرمون التستوستيرون والكالسيوم ، مجلة أبحاث كلية التربية الأساسية ، المجلد ١٠ ، العدد ٤ ، العدد ٤ ، كلية التربية الأساسية ، جامعة الموصل ، (2011).

12. سعد الدين ، محمد سمير ؛ علم وظائف الاعضاء والجهد البدني (ط ٣ ، منشأة المعرف ، الاسكندرية ، مصر ، 2000).

13. سعد نافع الدليمي ووليد غانم ذنون ؛ دراسة دقة الضرب الساحق بالكرة الطائرة وعلاقتها ببعض المتغيرات الكينماتيكية ، بحث منشور ، مجلة كلية التربية الرياضية ، جامعة القادسية ، عدد ٣ ، (1991).

14. سميحة خليل محمد ؛ مبادئ فسيولوجيا الرياضية (شركة ناس للطباعة ، القاهرة ، 2008).

15. عبد الرحمن عبد الحميد زاهر ؛ موسوعة فسيولوجيا الرياضة (ط ١ ، مركز الكتاب للنشر ، القاهرة ، 2011).

16. علي حسنين حسب الله ، سمير لطفي ، علي مصطفى ، حازم عبدالمحسن ؛ الكرة الطائرة المعاصرة ، مكتبة ومطبعة الغد ، عمان. (2000).

17. ماهر عبد اللطيف عارف ؛ دراسة النشاط الكهربائي للعضلة المستقيمة الفخذية وعلاقتها بقوة الدفع لحظة الارتفاع بالضرب الساحق في الكرة الطائرة ، مجلة كلية التربية الرياضية ، جامعة بغداد ، المجلد السادس والعشرون ، العدد الأول ، (2014).

18. محمد توفيق عثمان ؛ الاستجابات الفسيولوجية والمورفولوجية لجهاز الدوران قبل اداء جهدين هوائي ولا هوائي وبعدهما ، إطروحة دكتوراه ، كلية التربية الرياضية ، جامعة الموصل ، (2005).

19. محمد جابر بريقع ، عبد الرحمن ابراهيم عقل ؛ المبادئ الأساسية لقياس النشاط الكهربائي للعضلات ، الجزء الاول ، منشأة المعرف ، الاسكندرية ، (2014).

20. محمد نصر الدين رضوان ، خالد بن حمدان آل مسعود ؛ القياسات الفسيولوجية في المجال الرياضي (الطبعة الأولى ، مركز الكتاب للنشر ، القاهرة ، 2013).

21. مروان عبدالجبار ابراهيم ؛ الموسوعة العلمية للكرة الطائرة ، مهارات ، خطط ، إختبارات بدنية ومهارية ، قياسات جسمية ، إنتقاء ، معاقين ، تحكيم ، الطبعة الأولى ، مؤسسة الوراق للنشر والتوزيع ، الأردن. ، (2001).

22. مهند حسين البشتوبي و احمد ابراهيم الخوجا ؛ مبادئ التدريب الرياضي ، ط ٢ ، دار وائل للنشر والتوزيع ، الأردن ، (2010).

23. موفق اسعد محمود ، ايثار حمدي ، اثر جهد لا هوائي في بعض متغيرات النقل العصبي وعلاقتها بالاداء المهاري المركب للاعبين كرة القدم (بحث منشور ، مجلة جامعة الانبار للعلوم البدنية والرياضية ، المجلد الثالث ، العدد الثاني عشر ، 2016).

24. هارة ؛ إصول التدريب ، ترجمة عبد علي نصيف (العراق ، بغداد ، مطبعة التحرير ، 1975).

25. هزاع بن محمد الهزاع ؛ فسيولوجيا الجهد البدني ، الأسس النظرية والإجراءات المعملية لقياسات الفسيولوجية (الجزء الأول ، كلية التربية البدنية ، جامعة الملك سعود ، 2009).

26. يوسف لازم كماش , صالح بشير سعد ابو خيط ؛ **مقدمة في بيولوجيا الرياضة** (الطبعة الأولى , دار الوفاء لدنيا الطباعة والنشر , الأسكندرية , 2011).

27. يوسف لازم كماش , صالح بشير سعد ابو خيط ؛ **مقدمة في بيولوجيا الرياضة** (الطبعة الأولى , دار الوفاء لدنيا الطباعة والنشر , الأسكندرية , 2011).

ثانياً : المصادر الاجنبية :

28. Birch.k,McLaren D.&George k : **Sport &Exercise Physiology** (Bios Scientific publishers,usa , 2005).
29. Bruni Grassi , **Delayed Metabolic Activation of Oxidative Phosphorylation in Skeletal Muscle at Exercise Onset**, (by the American College of Sports Medicine , 2005).
30. Catriona Steele : **Applications of EMG in Clinical and Sports Medicine**, Published by InTech, Croatia , (2011).
31. De Luca , G. p: **The use of Surface Electromyography in Biomechanics** : (Journal of Applied Biomechanics) , (1997)
32. Komi. Paavo V. : **Strength and power in sport**, (Second Edition, The Olympic book of sport medicine , Black well scientific publication Germany (2003).
33. Marco B. & Roberto M. & Alberto R. : **Atlas of Muscle Innervation Zones Understanding Surface, Electromyography and Its Applications**, by Springer-Verlag Italia , (2012)
34. Miriam Gonzalez, & Eduardo Lusa, & Mikel Izquierdo, : **Muscle conduction velocity, surface electromyography variables, and echo intensity during concentric and eccentric fatigue**, by Wiley Online Library, Muscle & Nerve Volume 49, Issue 3 , (2014).
35. Núria Massó & Ferran R. & Dani R. & Gabriel G. & Lluís C. & Ana G. **Surface electromyography applications in the sport**, Apunts Med Esport. 45(165) Published by Elsevier España, S.L. All rights reserved , (2010).
36. Roger Bartlett : **Introduction to Sports Biomechanics, Analysing Human Movement Patterns**, Second edition, by Routledge Taylor & Francis Group , (2007).
37. SandorFi, C. : **Hitting“Volleyball**, volum 7 , number 6 , Colorado : A cme publishing , (1996)
38. Sharon A. & Denise L.: **Exercise physiology for health, fitness, and performance** (Third Edition, by Lippincott Williams & Wilkins, a Wolters Kluwer business, Printed in China, 2011)
39. W. Larry Kenney & Jack H. Wilmore & David L. Costill , **Physiology of sport and exercise**, (Sixth Edition, by Human Kinetics, Printed in the United States of America , 2015)
40. William J. & Steven J. & Michael R. , **Exercise physiology : integrating theory and application**,(First Edition, by Lippincott Williams & Wilkins, a Wolters Kluwer business, Printed in China, 2012).
41. <http://www.optimedical.com/products-services/opti-lion.html>