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Abstract: 

 

This study offers a comprehensive technical and conceptual review of blockchain platforms and the 

foundational technologies that underpin them. Beginning with cryptographic primitives such as 

hash functions and elliptic curve cryptography, the paper explores the structural and security 

components that facilitate decentralized trust in distributed systems. Core concepts including proof-

of-work algorithms like Hashcash, state machines, Merkle trees, and the Merkle Patricia Tree are 

examined for their roles in data verification, consensus, and transaction integrity. The work also 

delves into the evolution of blockchain paradigms through early proposals like B-money, and 

analyzes critical challenges such as the Byzantine Generals Problem and the double-spending 

dilemma. Advanced topics such as the CAP theorem, SPECTRE's consensus model, and Pedersen 

commitments are included to illustrate emerging approaches in blockDAGs and privacy-preserving 

transactions. Emphasis is placed on the balance between liveness, safety, and censorship resistance 

in modern blockchain design. By synthesizing both theoretical foundations and practical 

implementations, the paper presents an informed and critical perspective on the evolution, 

limitations, and future direction of blockchain technologies. 

Keywords: Blockchain Platforms, Distributed Ledger Technology (DLT), Consensus Mechanisms, 

Cryptographic Hash Functions, Byzantine Fault Tolerance (BFT). 

 

 

 

1. Concepts and Technologies 

To comprehend blockchain and distributed ledger technologies (DLTs), you need to have a good 

understanding of the core principles and fundamental technologies that form their bases. These 

bases include cryptography, distributed systems, and consensus algorithms—all of which had a 

hand in the creation of Bitcoin and systems like it [1]. 
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Working with these fundamentals is a must for anyone who wants to understand blockchain 

thoroughly. As Hashem et al. note, blockchain evolved from earlier networking and security 

models, particularly those in software-defined networking (SDN). Bakshi and Goyal emphasize that 

in decentralized networks, comprehending the architectural backbone of such systems is crucial to 

addressing their security threats [2]. 

This essential understanding gives vital context and readies the audience for further in-depth study 

of the blockchain technology and its varieties. 

2. Hash Functions 

At present, computing and blockchain systems depend on the assurance and health of cryptographic 

hash functions to ensure that digital data is safe and sound. Such functions take input data of any 

length and reduce it to a short, fixed-length output—typically a string of 128 to 512 bits, called a 

hash. A defining attribute of hash functions is that they are one-way. That is, given the hash output, 

it is next to impossible for an adversary to reconstruct the input that was used to generate the hash in 

the first place. This one-way irreversibility is the cornerstone of many widely used security 

applications [3]. 

Often employed in software applications, hash tables are data structures that use efficiently 

computed hashes to allow for electric data lookup and storage. But the basic nature and operation of 

hash tables say little about what makes them efficient or what their potential uses might be in terms 

of data storage and lookup. And for that, In a fundamental sense, this can be regarded as the 

foundational 'alphabet' of hashing—constituting the basic set of principles and constructs upon 

which hashing techniques are built. This is really a story about the power of using a hash not just as 

a symbolic way of representing something, but also as a roughly one-way function that allows you 

to compute a kind of signature with which to recognize something. Almost anything can be turned 

into a hashable form (indeed, different forms). Almost anything can be hash-tableized [4]. 

Over the years, a number of common hashing algorithms have become outdated as new computing 

technologies have laid bare their weak points. For example, older standards such as MD5 and SHA-

1 have been broken and are in the process of being retired, convinced of their necessary leave by the 

secure and resilient SHA-2 and SHA-3 that have taken their places. Sophisticated new attacks, both 

on the hash functions themselves and on the uses to which they are put, have required the design 

and implementation of new, truly secure, and functionally sound alternative hashing algorithms [5]. 

To constantly evaluate and enhance the strength of hashing algorithms, global contests and research 

projects have been set up. One such event is the SHA-3 contest directed by NIST, which was 

designed to develop a next-generation hash standard resilient to contemporary and emerging 

cryptographic threats. This event (and others like it) This highlights the ongoing evolution of 

cryptographic standards in response to emerging security challenges and adversarial tactics [6]. 

3. Hashcash 

One of the key technologies that predates and shapes contemporary blockchain systems is 

Hashcash. Hashcash is a proof-of-work algorithm that was first proposed by Adam Back in 1997. It 

was a response to denial-of-service attacks and email spam and was meant to serve as a digital 

currency. It introduced the concept of using a computationally hard function or puzzle that is easy to 

solve (given the right tools and/or information) but is not easy to verify (as in, if you don't and/or 

shouldn't have the right tools and/or information) [7]. 

Hashcash's cost function lies at the heart of its principle. It is intended to be computationally 

expensive to compute but trivial to verify. In practical terms, this means that while generating a 

valid hash (or proof) requires a lot of trial and error, once the network finds the correct solution, any 

node in the network can quickly validate it. This is the key to the security and maintaining the 

integrity of distributed consensus systems without the need for a centralized authority [8]. 
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Within Hashcash-based schemes, there are basically two kinds of cost functions: deterministic and 

probabilistic. With a deterministic cost function, there's a fixed sequence of operations that consume 

a predictable, consistent amount of resources. What's more, this kind of function is typically 

associated with what is effectively the most efficient algorithm (in terms of resource usage) that's 

known. On the other hand, Probabilistic cost functions are utilized, incorporating stochastic 

elements to model uncertainty and variability in computational processes. These cost functions 

introduce a degree of randomness, and this usually has to do with how the solver starts out with 

some arbitrary initial value and then iterates (or tries again and again) until a suitable hash is found 

[9]. 

Further distinctions can be made within probabilistic cost functions, particularly between bounded 

and unbounded variants. With bounded cost functions, the range of possible values is capped; 

therefore, the search always terminates in a defined space. Unbounded cost functions allow, in 

principle, for an infinite number of attempts. Although unbounded cost functions may appear 

impractical, their statistical convergence is well-supported by probability theory [10]. 

Adoption of Hashcash within the Bitcoin network reflects the robustness of Hashcash as a PoW 

mechanism. But even more, it shows the alignment of Hashcash (and by extension, PoW 

mechanisms) with cryptographic principles that make decentralized systems work. The influence of 

Hashcash is felt not only in the mining of Bitcoin and other PoW-based cryptocurrencies but also in 

a large number of applications that require resistance to abuse and Sybil attacks [11]. 

4. B-Money 

In 1998, Wei Dai presented B-money, a groundbreaking conceptual framework for a decentralized 

and anonymous digital currency system, through the Cypherpunks mailing list. His proposal saw a 

peer-to-peer economy in which participants could engage in secure monetary transactions without 

depending on centralized authorities. Dai’s system described two protocols that would 

(theoretically) let this currency function, without relying on a central server, the way most online 

payment systems do [12]. 

The first protocol was based on a symmetric proof-of-work mechanism in which users earned 

digital money by solving computational puzzles and then sending transactions to all the other 

network participants. In this scheme, every participant was responsible for keeping a record of all 

the other participants' account balances. If there was a dispute, The resolution mechanism relied on 

network participants transmitting electronic evidence, such as timestamps, to collectively identify 

the source of the anomaly and restore the system to its prior state. While the model was 

theoretically sound, it presented substantial design challenges in practical implementation [13]. 

Acknowledging these shortcomings, Dai put forth a second protocol in which only some network 

participants—designated "servers"—would handle the accounting. To preserve the servers' 

incentive to be honest, they had to put up the equivalent of a performance bond. If a server were to 

act in an untrustworthy way, it would lose the collateral it staked—its part of the digital currency 

supply. Meanwhile, the rest of the network acted like an auditor, keeping an eye on the servers to 

ensure that collusion among them or any kind of server misbehavior didn't destabilize the total 

money supply. This scheme was a very early and very crude form of using economic incentives to 

achieve a kind of trust within a decentralized system [14]. 

B-money theoretically influenced the development of cryptographic currencies despite being 

impractically applied, and it profoundly impacted the design of decentralized currencies based on 

anonymous transactions with cryptographic enforcement mechanisms—such as Bitcoin. In his 

White Paper, Satoshi Nakamoto explicitly named B-money as a currency design that inspired the 

Bitcoin project, crediting its author, Wei Dai, with invaluable contributions to decentralized, 

practical currency design. 
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5. Peer-to-Peer (P2P) Networks 

Peer-to-peer networking represents a departure from the traditional client-server paradigm that 

underpins much of the modern internet. In conventional architectures, user requests for content are 

directed toward centralized servers. Clients rely on the servers to fulfill their requests, creating a 

centralized point of interaction—and potential vulnerability. P2P networks, in contrast, decentralize 

this interaction. Peers act as both clients and servers and directly exchange data without reliance on 

a central authority [15]. 

This decentralized architecture brings several benefits, especially concerning robustness, scalability, 

and fault tolerance. Some peer-to-peer (P2P) models incorporate centralized features for 

coordination; however, truly decentralized systems allocate control and resource management 

among all nodes, thus eliminating any real or perceived single points of failure. Networks of this 

sort may adopt either a hierarchical or flat topology. In hierarchical models, certain nodes—called 

supernodes or masternodes—assume additional responsibilities, such as validating transactions, 

managing consensus, and more efficiently routing communication [16]. 

The overlay structure of a P2P network can be either structured or unstructured. 

Unstructured networks enable connected peers to interact without a predefined topology. Peers can 

connect in dynamic and flexible ways, which captures the nature of an unstructured network. Yet 

this very flexibility also results in inefficient routing and querying. Data searched for in an 

unstructured network can traverse many nodes before it is found—or it may not be found at all. 

Conversely, in a structured network, the peers themselves are part of a globally defined and 

coherent system. They use well-known algorithms to maintain both local and global knowledge of 

the system's state. Moreover, they make use of a well-understood communication protocol to enable 

the efficient and accurate routing of data from any point in the system to any other point [17]. 

Some blockchain platforms, like Ethereum and Dash, take advantage of these P2P characteristics to 

improve transaction processing and governance. In these ecosystems, the supernodes often 

contribute to the decentralized decision-making processes that are fundamental to blockchain 

design. They do this by partaking (or not) in three main ways: consensus voting (which often occurs 

at multiple levels in governance hierarchies), ledger maintenance (wherever it might occur in peer 

or supernode space), and smart contract execution functions (again, this could occur anywhere in 

the peer:supernode space). 

6. SHA-256 

Secure Hash Algorithm 256 (SHA-256) is a member of the SHA-2 cryptographic hash function 

family. Its main purpose is to ensure the integrity and security of digital information. From a 

mathematical standpoint, a hash function takes an input of arbitrary length and transforms it into a 

fixed-length output (or "digest"). The output is unique to that specific input. SHA-256 does this 

with a 256-bit (32-byte) output. No matter what you give it, as long as it's within the limits of the 

function, the output will always be 256 bits long. (And yes, that includes anything from a single 

character to a massive set of "data".) One good property of a secure hash function is that you should 

get a completely different output if you change even one tiny little bit of the input [18]. 

SHA-256 functions by combining several types of operations—specifically, Boolean logic 

operations like AND (∧), OR (∨), and XOR (⊕))—with bitwise shifts, message scheduling, and 

modular arithmetic. These operations are carried out in a series of 64 rounds, each reinforcing the 

complexity and security of the digest. As in all secure hashes, this complexity is meant to defeat 

attempts to find weaknesses that would let an attacker reverse-engineer either the hash or the 

original message [19]. 

While such attacks remain computationally infeasible with current technology, their theoretical 

implications necessitate careful consideration. Pre-image attacks are thwarted by the very nature of 
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the one-way function. Even so, SHA-256 has a lot of built-in complexity to resist the most well-

known methods of cryptanalysis. 

In a pre-image attack, a person with ill intent tries to reverse-engineer the original input from a hash 

output they already know. What makes this attack on SHA-256 so computationally infeasible is its 

pre-image resistance. Consequently, people using current technology might find it next to 

impossible to succeed at this task. On the other hand, collision attacks aim to find two different 

inputs that yield the same hash output. If these ill-intentioned individuals were to succeed at this 

task, they might substitute some data for something else while preserving the hash, which is what 

would compromise data integrity [20]. 

A more subtle threat is the birthday attack, which uses probability theory to find hash collisions 

faster than the brute-force methods that we might otherwise use. Based on the famous birthday 

paradox, this attack shows that in a dataset of just 23 elements, there's better than even odds that 

two different items will have the same hash value. While the birthday attack demonstrates 

something important about the design of hash functions, it is not a method of attacking them that 

"Concerns regarding the scheme proposed by Pinkas and Kohno primarily stem from its 

impracticality for real-world deployment. At the other end of the spectrum, the primary threats 

involve the occurrence of random collisions and the deliberate generation of malicious collisions, 

the SHA-256 function is a fundamental component of today's cryptographic protocols. This is 

especially true in blockchain systems, where it plays several key roles. For one, it supports the 

"digital signature" mechanism used in blockchain systems. SHA-256 also serves to ensure 

"transaction integrity." Blocks in the blockchain are made up of SHA-256 hash values in such a way 

that an invalid block can easily be detected. 

7. Merkle Trees 

The Merkle Tree, also known as a binary hash tree, is a hierarchical data structure designed to 

efficiently and securely summarize and verify the integrity of large datasets.  

First described by Ralph Merkle in the late 1970s, a Merkle tree is now the basis for many of 

today's cryptographic applications, especially in blockchain technologies [21]. Structurally, a 

Merkle tree is an inverted tree, with the individual data blocks hashed at the leaf level. Each non-

leaf node represents the hash of the concatenated hashes of its child nodes, working up to a single 

value at the top known as the Merkle root. This structure permits exceedingly efficient checking 

operations. If one has n elements, one can confirm the inclusion of a specific data block in a Merkle 

Tree using only log₂(n) steps and a few operations that are nearly constant in number. Because of 

this logarithmic complexity, Merkle Trees are very scalable and, therefore, appropriate for verifying 

large amounts of data in distributed systems. 

Peer-to-peer (P2P) networks use Merkle Trees to guarantee that the data sent over the network is 

intact and in its original form when it reaches its destination. They allow the nodes in the network to 

check the integrity of the received files or data segments, ensuring that these items are authentic and 

have not been tampered with during transmission.  Having one of the most profound effects on P2P 

networks, Merkle Trees allow them to achieve a certain level of security. However, another area of 

significant impact is in blockchain technologies such as Bitcoin and Ethereum. Unlike the P2P 

networks in which they might exist, in these ecosystems, the Merkle Trees themselves are not the 

secure components. Instead, they serve as a highly efficient way of compactly representing the huge 

number of transactions that take place within the system [22].  

Each transaction gets hashed. Then, the hashes of pairs of transactions are combined and hashed 

again, which produces the first internal node of the tree. The process continues. The resulting items 

are carefully and serially combined until the top node (the [[merkle root]]) is reached. This way of 

going about things achieves two things. First, it has a security effect: going from one node of the 

tree to the next, it becomes more and more difficult to alter anything with it being noticed. If 
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changes are made, it will become apparent when checking the hashes of the first combination of 

things that were supposed to have been combined. Second, it saves space [23]. 

The Merkle root allows quick checks to see if a transaction is part of a dataset without having to 

look through the entire dataset. This check is what I mean by verifying inclusion. It is done with the 

level of a hash function. Thus, the basic structure of a Merkle root and its workings all revolve 

around hashing. (The same is true for its reverse operation, hashing in the direction toward the 

transaction.) Two properties of hashing are what make this inclusion check work so well. Scaling 

blockchain networks increases the significance of Merkle Trees. They are used to maintain trust and 

consistency across distributed ledgers. Their effectiveness can be attributed to their strong 

mathematical foundations and efficient utilization of computational resources. This indicates that 

they are both memory-efficient and computationally lightweight, requiring minimal storage and 

processing resources. 

8. Merkle Patricia Tree 

In the case of the Ethereum blockchain, the foundation data structure that encodes and manages the 

state of the network is called the Merkle Patricia Tree (MPT). The MPT is a hybrid structure, part 

Merkle Tree and part Patricia Trie (or Radix Tree). For readers unfamiliar with the terms 'Radix 

Tree' or 'Prefix Tree,' it is important to note that these refer to the same underlying data structure as 

the Patricia Trie, albeit under different nomenclatures [24]. 

A Patricia Trie organizes data so that each key is represented as a path through the tree, allowing 

nodes with overlapping prefixes to share branches. This structure is highly memory-efficient and is 

just right for applications in which rapid prefix matching is essential. When this concept is 

coordinated with Merkle hashing, each node in the Merkle Patricia Tree is given a cryptographic 

hash, specifically the SHA-3 (Keccak-256) hash, that is based on the contents of that node. These 

hashes act both as unique keys for database storage and as verifiable summaries of the contents of 

the nodes [25]. 

Ethereum uses MPTs to manage the whole system state, comprising account balances, smart 

contract storage, and other blockchain data. This state is stored in key-value databases, with Geth 

(Go-Ethereum) using LevelDB and Parity using RocksDB. Both these database engines map 

directly to the MPT structure [26]. The keys in the Ethereum state trie are expressed in nibbles 

(half-bytes), which allows each node in the trie to branch into a maximum of 16 children. Nodes 

without children are designated as leaf nodes, each of which contains a path and an associated value 

[27]. 

In addition to leaf and branch nodes, Ethereum employs extension nodes as an optimization for 

scenarios when a branch node has only one child. If this optimization is not used, the path from the 

root of the trie to this child would be represented with a series of branch nodes. Instead, with 

extension nodes, a single node represents the shared part of the path from the root to the child, plus 

a hash of the child. This is only one example of an optimization used in the Ethereum trie. 

Ethereum uses a scheme that is based on prefix encoding to differentiate leaf nodes from extension 

nodes. When the path in a leaf node has an even count of nibbles, a prefix of 0x20 is applied; when 

the count is odd, 0x30 is used. For extension nodes, a prefix of 0x00 is used for even-numbered 

nibbles and a prefix of 0x10 is used for odd-numbered counts. This prefixing scheme ensures that 

Ethereum's state data can be traversed and verified in a consistent and efficient manner, contributing 

to the platform's overall scalability. 

9. Bloom Filters 

One important concept associated with Merkle Trees—especially in blockchain and distributed 

systems—is the Bloom filter. This is a space-efficient, probabilistic data structure that tests whether 

an element is a member of a particular set. Its unique feature lies in its asymmetrical error model: a 
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Bloom filter can conclusively determine when an element is not present in a dataset, but when it 

indicates presence, there remains a small probability of a false positive. In contrast, false negatives 

are impossible, making it a highly reliable structure for exclusion-based queries [28]. 

This behavior is achieved through a series of hash functions applied to the input elements. Instead 

of storing the data itself, the Bloom filter stores a bit array where each bit is set based on the hash 

outputs of the data elements. When querying an element, the same hash functions are applied, and 

the corresponding bits in the array are checked. If any of them are unset, the element is definitely 

absent. If all are set, the element might be present. The absence of actual data storage and reliance 

solely on bit manipulation makes Bloom filters extremely memory-efficient, especially in scenarios 

involving large datasets or limited storage capacity [29]. 

In the blockchain ecosystem, Bloom filters are particularly valuable for light clients—devices or 

applications that do not download the full blockchain but instead operate with a subset of the data. 

For example, in cryptocurrency wallets, Bloom filters enable efficient transaction lookup by 

allowing the client to quickly determine whether a block possibly contains transactions relevant to a 

specific address, without having to parse the entire block content. Bandwidth and computation are 

both reduced, allowing interactions with the blockchain that are more scalable and far more user-

friendly [30]. 

Hence, bloom filters act as a real-world optimization trick in distributed networks that handle huge 

datasets, deftly balancing size, speed, and accuracy, and as such, are an integral part of many 

performance-sensitive blockchain operations. 

10. State Machine 

The state machine is a basic computational model in computer science. It is a mathematical 

abstraction that is used to describe and implement algorithms and control systems, as well as to 

characterize complex workflows. At its core, a state machine consists of a set of predefined states, 

inputs, and transitions between states, all of which are triggered by some incoming data or event. 

With each input, the system advances from one state to another, either deterministically or non-

deterministically, and the incoming data or events control the progression of the system through its 

state space [31]. 

The state machine model has wide-ranging applicability throughout computing, despite being 

seemingly simple. It serves a vital role in such areas as compiler construction, network protocol 

design, and user interface event handling. In web development, the rendering of HTML content is 

inherently sequential and dependent on the structure of the tags. These very true statements set the 

stage for the appearance of the next computational model, which indeed needs its own proper 

introduction [32]. 

State machines can be divided into two primary kinds: deterministic and non-deterministic. Each 

state in a deterministic finite state machine (DFSM) has exactly one transition for a given input. 

This makes the behavior of a DFSM predictable and straightforward to model. In contrast, a non-

deterministic finite state machine (NFSM) allows multiple possible transitions for a single input. 

This means the system can take several different paths, none of which can be uniquely identified 

until the right output is delivered or the right external action is taken. Appearance-wise, NFSMs are 

more complex than DFSMs, no doubt about it. Yet they are conceptually equivalent to DFSMs 

because both types of state machines can be used to solve the same set of problems [33]. 

This abstract model is also useful for representing real-world situations. Take, for instance, the act 

of getting into and out of a car. The system can exist in clear states like "outside the car," "opening 

the car door," "inside the car," or "closing the car door," with transitions between states prompted 

by well-defined physical actions. It doesn't take a genius to see that only certain sequences of 

actions can make the system transition between states, which is what makes it a finite state machine. 
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In the end, state machines provide a solid method for expressing how systems work— or should 

work— when their outputs depend on the current inputs and on the event history. Because of this, 

they are vital for not just the analysis but also the design of hardware and software systems. 

11. Turing Machine 

The theoretical computational model that underpins contemporary computer science and the formal 

theory of computation is Alan Turing's 1936 concept of the Turing machine. A Turing machine's 

unbounded memory, in the form of infinite tape, sets it apart from finite state machines, which are 

limited to a predetermined number of states and memory cells. A Turing machine reads the symbols 

on its tape, writes new symbols, or modifies old ones, and performs these tasks in such a way that it 

translates the logic of any computable algorithm into a set of mechanical procedures [34]. 

The defining feature of the Turing machine is its ability to recognize and process non-regular 

patterns, making it computationally universal. Any computation that can be described 

algorithmically can be executed by a Turing machine, given enough time and memory. A Turing 

machine operates, not through a single computation, but through finite (and potentially very large) 

sets of instructions (also known as transition functions), which determine its behavior based on the 

current state of the machine and the symbol it reads on the tape. Based on these inputs, the machine 

can move the tape to the left or to the right, write a new symbol, or transition to a different state 

[35]. 

A physical device is not what the Turing machine is; it is a conceptual model that has played a 

crucial role in defining the limits of computation. It is still the centerpiece of conversations about 

algorithmic complexity, decidability, and the theory of computation. Many programming languages 

and system architectures derive their theoretical basis from their equivalence to a Turing machine—

if not in fact, then in kind. This property of being like a Turing machine is referred to as being 

Turing complete. 

Although the device is a basic model, it strikingly reveals the core principles of how algorithms 

work and prepares the ground for yielding to an understanding of the highly intricate models of 

computation that underpin smart contracts in blockchains and virtual machines. 

12. Elliptic Curve Cryptography (ECC) 

Among the technologies that are basic to today's digital security, Elliptic Curve Cryptography 

(ECC) is one of the most complex and sophisticated. In contrast to some earlier concepts that are 

perhaps more intuitive, ECC requires truly understanding, at a deep level, both number theory and 

the principles of asymmetric cryptography. To really get a grip on what ECC is and the big role it 

plays or will play in securing the digital world, one must first understand public key cryptography—

also known as asymmetric encryption. 

Public key cryptography works by generating a pair of keys that are mathematically linked: a public 

key, which is freely available, and a private key. The private key, which is used only by the owner, 

must be kept secret if the system is to remain secure. The keys are linked by a one-way 

mathematical function, reversible only in one direction (from private key to public key), with high 

efficiency but low feasibility in the opposite direction (from public key back to private key). In 

short, it's easy to compute the public key from the private key, but virtually impossible to do the 

reverse and compute the private key from the public key. This cryptographic scheme emerged as a 

way to eliminate the many shared secret key problems of the long, annoying, and easily forgotten 

past [36]. 

The algebraic structure of elliptic curves over finite fields serves as the basis for the specific 

implementation of public key cryptography known as the elliptic curve cryptography (ECC). What 

makes ECC different from other public key algorithms, such as the Rivest-Shamir-Adleman (RSA) 

algorithm, is that it can reach comparable levels of security using much smaller key sizes, thereby 
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enhancing efficiency not only in computation but also in storage. For instance, a 256-bit key used in 

the ECC is generally considered to reach the level of security that a 3072-bit RSA key reaches [37]. 

The cryptographic strength of EC arises from the Elliptic Curve Discrete Logarithm Problem 

(ECDLP)—a problem that is currently believed to be computationally intractable. In practical 

terms, EC enables secure digital signatures, key exchange protocols (such as ECDH), and 

encryption schemes (e.g., ECIES), all while reducing computational overhead. Its adoption has 

grown rapidly in modern cryptographic applications, including secure web communications 

(TLS/SSL), digital certificates, and blockchain technologies, such as Bitcoin and Ethereum, which 

use EC to generate wallet addresses and validate transactions [38]. 

At its core, ECC stands for a significant step forward in the realm of cryptographic innovation, 

blending the unfailing reliability of algebraic structures with the everyday practicality of fast 

computing. In an age when networks are everywhere and virtual information is flooding in all 

directions, this could hardly be a more urgent necessity. 

13. The Byzantine Generals Problem 

The Byzantine Generals Problem is a seminal challenge in distributed computing that highlights the 

difficulties of achieving consensus among multiple agents—referred to as "generals"—in a system 

where components may fail or act maliciously. 

The problem was first presented as a thought experiment by Lamport, Shostak, and Pease in the 

early 1980s. It illustrates the difficulties of organizing a group when you can't trust the members to 

do the right thing because they're not always reliable, they're not always truthful, and under some 

conditions, they might betray you [39]. 

In the allegory, the Byzantine army camped around an enemy city comprises many divisions, each 

commanded by a general. In order to successfully attack, the generals must agree on a common 

strategy—either attack or retreat—executed simultaneously. However, communication is only 

possible via messengers, who may be delayed, intercepted, or corrupted. Moreover, one or more 

generals may be traitors attempting to prevent consensus. The core problem lies in enabling all loyal 

generals to agree on a plan, even when some actors behave arbitrarily or maliciously. 

Multiple protocols have been proposed to address this challenge. Deterministic protocols with a 

fixed number of messages often fail because delayed or lost messages can prevent agreement, 

especially if a receiver acts based on incomplete information. This breakdown leads to one party 

proceeding with the plan while another hesitates, thereby resulting in failure. Non-deterministic and 

variable-length protocols, often modeled as branching trees of message sequences, have also been 

explored. However, under rigorous analysis, these can be reduced to deterministic protocols that 

inherit the same weaknesses, particularly when facing message omission or manipulation. In such 

scenarios, the protocol converges into a "null tree," indicating no valid communication path—a 

signal of inherent limitation [40]. 

To achieve Byzantine Fault Tolerance (BFT), a foundational threshold must be satisfied: the total 

number of nodes n must exceed three times the number of potential traitors t, i.e., n > 3t. For 

example, with one traitor, a system must contain at least four nodes to reach consensus. If one 

general sends contradictory commands to two lieutenants, and they are unable to verify message 

authenticity, they cannot identify the traitor, which jeopardizes coordination. However, with a 

sufficient number of participants and reliable message validation, consensus becomes achievable. 

A proposed corrective action is to use incontrovertible message signatures, which rely on public key 

(or asymmetric) cryptography. This allows the recipients to verify not just the content of the 

messages they receive (as is already possible with private key, or symmetric, cryptography) but also 

the origin and 'chain of custody' of those messages, making impersonation and misinformation 

much less likely. But in the context of safety-critical systems, this is not nearly enough. 
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This issue made significant progress toward resolution with the development of Practical Byzantine 

Fault Tolerance (PBFT) by Miguel Castro and Barbara Liskov. PBFT took the basic idea from 

earlier models and made it not only practical and scalable but also robust in the sorts of adversarial, 

Asynchronous environments within which such systems are inherently required to operate. Since 

then, a nice variety of protocols inspired by PBFT have emerged, Aardvark focuses on enhancing 

system robustness under adversarial conditions, while Q/U is designed to achieve high performance 

and throughput under standard operational conditions. 

14. Double-Spending Problem 

The double-spending problem is a key issue in digital currency systems. It is the risk that a single 

unit of currency could be spent more than once. While physical currencies inherently avoid this 

issue due to their tangible, non-duplicable nature, digital assets—being composed of easily 

replicable data—are inherently vulnerable. Traditional financial systems address this risk through 

centralized authorities that validate transactions and maintain ledger integrity. However, this 

reliance on a trusted intermediary poses risks related to privacy, centralization of control, and 

vulnerability to single points of failure [41]. 

In decentralized systems such as cryptocurrencies, the solution lies in consensus algorithms, which 

remove the need for trust in any central actor. Bitcoin, for example, resolves double-spending 

through a proof-of-work (PoW) mechanism where network participants (miners) compete to 

validate transactions and append them to a shared, immutable ledger. This method ensures that once 

a transaction is confirmed by multiple subsequent blocks, it becomes computationally infeasible to 

reverse it. Other blockchain systems adopt proof-of-stake (PoS) or hybrid approaches, which assign 

consensus privileges based on token holdings or combined metrics to mitigate energy consumption 

and enhance scalability. 

15. The CAP Theorem 

The CAP theorem, formulated by Eric Brewer and later formalized by Gilbert and Lynch, 

articulates a fundamental trade-off in distributed data systems: only two of the three properties—

Consistency, Availability, and Partition Tolerance—can be fully achieved simultaneously [42]. In 

the context of blockchain, partition tolerance is assumed by design, given that network failures and 

asynchronous communication are inherent in distributed networks. 

As a result, blockchain systems have to choose between two key system properties: availability and 

consistency. Most public blockchain platforms like Bitcoin and Ethereum lean toward availability 

and partition tolerance, almost to the point of deferring immediate consistency. You can see this in 

the requirement that transactions be confirmed by several subsequent blocks to ensure finality, 

which serves to decrease the risks that are associated with temporary forks and with network delays. 

Consensus algorithms, like Proof of Work (PoW) and its several variants, play a central role in this 

trade-off [43]. 

16. SPECTRE and the Condorcet Paradox 

The SPECTRE protocol (Serialization of Proof-of-Work Events: Confirming Transactions via 

Recursive Elections) presents an innovative method for achieving blockchain consensus based on a 

blockDAG (Directed Acyclic Graph) structure rather than a linear chain. A significant complexity 

in this framework is its link to the Condorcet paradox, from social choice theory. First proposed by 

Marquis de Condorcet, the paradox illuminates many an occasion on which collective preferences 

can be cyclic, even when individual preferences are not, and never mind what happens when an 

individual tries to make a collective decision. This presents a significant challenge to establishing a 

consistent block ordering in distributed systems [44]. 

This paradox applied to SPECTRE reveals how hard it is to find a linear ordering of blocks when 

many competing branches exist, each backed by different subsets of nodes. There is no clear 
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"Condorcet winner" that would let us achieve consensus easily, and in SPECTRE, achieving this 

objective necessitates a design that minimizes complexity, often relying on probabilistic methods or 

recursive voting mechanisms to establish order among nodes and blocks when inherent ordering 

fails. The complexity of this task increases significantly with the growth in the number of nodes and 

blocks [45]. 

17. Pedersen Commitments 

Pedersen commitments are cryptographic constructions widely used in privacy-focused blockchain 

systems such as Monero, Zcash, and experimental features in Ethereum. These commitments allow 

a sender to commit to a value m using a random value r, without revealing either until a later time. 

The commitment is constructed as: 

C(m, r) = g^m · h^r, where g and h are cryptographic generators in a group where the discrete 

logarithm problem is hard [46]. 

Pedersen commitments are both hiding (the committed value remains secret) and binding (the 

committer cannot change the value after committing). These properties make them ideal for 

constructing confidential transactions while maintaining verifiability. In blockchain, they are 

instrumental in preventing double-spending while ensuring transaction privacy and integrity, 

particularly in systems that rely on zero-knowledge proofs. 

18. Fungibility and Liveness 

In decentralized systems, fungibility and liveness are essential properties. Fungibility refers to the 

interchangeability of assets: one unit of a currency should be indistinguishable and equally 

acceptable as another. This characteristic is critical for any currency-like function of 

cryptocurrencies. However, not all digital assets are fungible. Non-Fungible Tokens (NFTs), for 

example, represent unique, indivisible assets such as collectibles, certificates, or identity documents, 

and have found use cases in digital art, real estate, and academic credentialing [47]. 

Liveness, on the other hand, is a property of consensus protocols that guarantees that the system 

continues to process and confirm transactions. In contrast, safety ensures that the system does not 

reach incorrect states. Many blockchain systems must balance these two. Bitcoin, for instance, 

prioritizes liveness via Nakamoto consensus, while protocols like Tendermint focus on safety using 

Byzantine Fault Tolerant (BFT) consensus. HotStuff, a protocol proposed by Facebook for the Libra 

(now Diem) project, introduces optimizations to improve liveness while maintaining finality by 

allowing blocks without validator votes to be resolved later once consensus is reached [48]. 

19. Transaction and Settlement Finality 

Finality in blockchain refers to the assurance that a transaction, once confirmed, cannot be altered or 

reversed. This concept is central in financial systems, where operational finality ensures that a 

transaction is irreversibly recorded, while settlement finality refers to the legal and contractual 

recognition of such completion. 

In blockchain networks, finality may be deterministic, probabilistic, or absent. Bitcoin offers 

probabilistic finality, requiring multiple block confirmations to reduce the likelihood of reversion. 

Ethereum 2.0, with its PoS-based consensus, aims to offer stronger finality guarantees. However, 

even centralized systems are not immune to disruptions—from hacking to institutional failure. As 

Vitalik Buterin notes, absolute certainty is elusive even in traditional finance, as fraud, technical 

errors, or corruption can undermine trust. In blockchain, finality ensures confidence in 

transactions—an essential factor for mainstream adoption [49]. 
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20. Censorship Resistance 

Censorship resistance is one of the most valued properties of public blockchain systems. It ensures 

that any participant can access and interact with the network freely, without being blocked or 

restricted based on identity, location, or political influence. In contrast to permissioned blockchains, 

which are controlled by centralized authorities, public blockchains such as Bitcoin and Ethereum 

allow anyone to participate, with access only constrained by the protocol's consensus rules. This is a 

pretty significant property, especially in places like authoritarian regimes or economically unstable 

regions, where access to financial systems is often limited. Access is always more significant when 

participation is open and censorship is resisted. Bitcoin's value proposition is particularly appealing 

in such scenarios. Indeed, There has been a notable increase in the adoption of Bitcoin in repressive 

regimes and economically unstable countries—such as Venezuela and Iran—where local currencies 

are experiencing hyperinflation or where access to the global financial system is restricted due to 

international sanctions [50]. 
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