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Abstract:

This study offers a comprehensive technical and conceptual review of blockchain platforms and the
foundational technologies that underpin them. Beginning with cryptographic primitives such as
hash functions and elliptic curve cryptography, the paper explores the structural and security
components that facilitate decentralized trust in distributed systems. Core concepts including proof-
of-work algorithms like Hashcash, state machines, Merkle trees, and the Merkle Patricia Tree are
examined for their roles in data verification, consensus, and transaction integrity. The work also
delves into the evolution of blockchain paradigms through early proposals like B-money, and
analyzes critical challenges such as the Byzantine Generals Problem and the double-spending
dilemma. Advanced topics such as the CAP theorem, SPECTRE's consensus model, and Pedersen
commitments are included to illustrate emerging approaches in blockDAGs and privacy-preserving
transactions. Emphasis is placed on the balance between liveness, safety, and censorship resistance
in modern blockchain design. By synthesizing both theoretical foundations and practical
implementations, the paper presents an informed and critical perspective on the evolution,
limitations, and future direction of blockchain technologies.
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1. Concepts and Technologies

To comprehend blockchain and distributed ledger technologies (DLTSs), you need to have a good
understanding of the core principles and fundamental technologies that form their bases. These
bases include cryptography, distributed systems, and consensus algorithms—all of which had a
hand in the creation of Bitcoin and systems like it [1].
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Working with these fundamentals is a must for anyone who wants to understand blockchain
thoroughly. As Hashem et al. note, blockchain evolved from earlier networking and security
models, particularly those in software-defined networking (SDN). Bakshi and Goyal emphasize that
in decentralized networks, comprehending the architectural backbone of such systems is crucial to
addressing their security threats [2].

This essential understanding gives vital context and readies the audience for further in-depth study
of the blockchain technology and its varieties.

2. Hash Functions

At present, computing and blockchain systems depend on the assurance and health of cryptographic
hash functions to ensure that digital data is safe and sound. Such functions take input data of any
length and reduce it to a short, fixed-length output—typically a string of 128 to 512 bits, called a
hash. A defining attribute of hash functions is that they are one-way. That is, given the hash output,
it is next to impossible for an adversary to reconstruct the input that was used to generate the hash in
the first place. This one-way irreversibility is the cornerstone of many widely used security
applications [3].

Often employed in software applications, hash tables are data structures that use efficiently
computed hashes to allow for electric data lookup and storage. But the basic nature and operation of
hash tables say little about what makes them efficient or what their potential uses might be in terms
of data storage and lookup. And for that, In a fundamental sense, this can be regarded as the
foundational 'alphabet’ of hashing—constituting the basic set of principles and constructs upon
which hashing techniques are built. This is really a story about the power of using a hash not just as
a symbolic way of representing something, but also as a roughly one-way function that allows you
to compute a kind of signature with which to recognize something. Almost anything can be turned
into a hashable form (indeed, different forms). Almost anything can be hash-tableized [4].

Over the years, a number of common hashing algorithms have become outdated as new computing
technologies have laid bare their weak points. For example, older standards such as MD5 and SHA-
1 have been broken and are in the process of being retired, convinced of their necessary leave by the
secure and resilient SHA-2 and SHA-3 that have taken their places. Sophisticated new attacks, both
on the hash functions themselves and on the uses to which they are put, have required the design
and implementation of new, truly secure, and functionally sound alternative hashing algorithms [5].

To constantly evaluate and enhance the strength of hashing algorithms, global contests and research
projects have been set up. One such event is the SHA-3 contest directed by NIST, which was
designed to develop a next-generation hash standard resilient to contemporary and emerging
cryptographic threats. This event (and others like it) This highlights the ongoing evolution of
cryptographic standards in response to emerging security challenges and adversarial tactics [6].

3. Hashcash

One of the key technologies that predates and shapes contemporary blockchain systems is
Hashcash. Hashcash is a proof-of-work algorithm that was first proposed by Adam Back in 1997. It
was a response to denial-of-service attacks and email spam and was meant to serve as a digital
currency. It introduced the concept of using a computationally hard function or puzzle that is easy to
solve (given the right tools and/or information) but is not easy to verify (as in, if you don't and/or
shouldn't have the right tools and/or information) [7].

Hashcash's cost function lies at the heart of its principle. It is intended to be computationally
expensive to compute but trivial to verify. In practical terms, this means that while generating a
valid hash (or proof) requires a lot of trial and error, once the network finds the correct solution, any
node in the network can quickly validate it. This is the key to the security and maintaining the
integrity of distributed consensus systems without the need for a centralized authority [8].
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Within Hashcash-based schemes, there are basically two kinds of cost functions: deterministic and
probabilistic. With a deterministic cost function, there's a fixed sequence of operations that consume
a predictable, consistent amount of resources. What's more, this kind of function is typically
associated with what is effectively the most efficient algorithm (in terms of resource usage) that's
known. On the other hand, Probabilistic cost functions are utilized, incorporating stochastic
elements to model uncertainty and variability in computational processes. These cost functions
introduce a degree of randomness, and this usually has to do with how the solver starts out with
some arbitrary initial value and then iterates (or tries again and again) until a suitable hash is found

[9]

Further distinctions can be made within probabilistic cost functions, particularly between bounded
and unbounded variants. With bounded cost functions, the range of possible values is capped;
therefore, the search always terminates in a defined space. Unbounded cost functions allow, in
principle, for an infinite number of attempts. Although unbounded cost functions may appear
impractical, their statistical convergence is well-supported by probability theory [10].

Adoption of Hashcash within the Bitcoin network reflects the robustness of Hashcash as a PowW
mechanism. But even more, it shows the alignment of Hashcash (and by extension, PoW
mechanisms) with cryptographic principles that make decentralized systems work. The influence of
Hashcash is felt not only in the mining of Bitcoin and other PoW-based cryptocurrencies but also in
a large number of applications that require resistance to abuse and Sybil attacks [11].

4. B-Money

In 1998, Wei Dai presented B-money, a groundbreaking conceptual framework for a decentralized
and anonymous digital currency system, through the Cypherpunks mailing list. His proposal saw a
peer-to-peer economy in which participants could engage in secure monetary transactions without
depending on centralized authorities. Dai’s system described two protocols that would
(theoretically) let this currency function, without relying on a central server, the way most online
payment systems do [12].

The first protocol was based on a symmetric proof-of-work mechanism in which users earned
digital money by solving computational puzzles and then sending transactions to all the other
network participants. In this scheme, every participant was responsible for keeping a record of all
the other participants' account balances. If there was a dispute, The resolution mechanism relied on
network participants transmitting electronic evidence, such as timestamps, to collectively identify
the source of the anomaly and restore the system to its prior state. While the model was
theoretically sound, it presented substantial design challenges in practical implementation [13].

Acknowledging these shortcomings, Dai put forth a second protocol in which only some network
participants—designated "servers"—would handle the accounting. To preserve the servers'
incentive to be honest, they had to put up the equivalent of a performance bond. If a server were to
act in an untrustworthy way, it would lose the collateral it staked—its part of the digital currency
supply. Meanwhile, the rest of the network acted like an auditor, keeping an eye on the servers to
ensure that collusion among them or any kind of server misbehavior didn't destabilize the total
money supply. This scheme was a very early and very crude form of using economic incentives to
achieve a kind of trust within a decentralized system [14].

B-money theoretically influenced the development of cryptographic currencies despite being
impractically applied, and it profoundly impacted the design of decentralized currencies based on
anonymous transactions with cryptographic enforcement mechanisms—such as Bitcoin. In his
White Paper, Satoshi Nakamoto explicitly named B-money as a currency design that inspired the
Bitcoin project, crediting its author, Wei Dai, with invaluable contributions to decentralized,
practical currency design.
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5. Peer-to-Peer (P2P) Networks

Peer-to-peer networking represents a departure from the traditional client-server paradigm that
underpins much of the modern internet. In conventional architectures, user requests for content are
directed toward centralized servers. Clients rely on the servers to fulfill their requests, creating a
centralized point of interaction—and potential vulnerability. P2P networks, in contrast, decentralize
this interaction. Peers act as both clients and servers and directly exchange data without reliance on
a central authority [15].

This decentralized architecture brings several benefits, especially concerning robustness, scalability,
and fault tolerance. Some peer-to-peer (P2P) models incorporate centralized features for
coordination; however, truly decentralized systems allocate control and resource management
among all nodes, thus eliminating any real or perceived single points of failure. Networks of this
sort may adopt either a hierarchical or flat topology. In hierarchical models, certain nodes—called
supernodes or masternodes—assume additional responsibilities, such as validating transactions,
managing consensus, and more efficiently routing communication [16].

The overlay structure of a P2P network can be either structured or unstructured.

Unstructured networks enable connected peers to interact without a predefined topology. Peers can
connect in dynamic and flexible ways, which captures the nature of an unstructured network. Yet
this very flexibility also results in inefficient routing and querying. Data searched for in an
unstructured network can traverse many nodes before it is found—or it may not be found at all.
Conversely, in a structured network, the peers themselves are part of a globally defined and
coherent system. They use well-known algorithms to maintain both local and global knowledge of
the system'’s state. Moreover, they make use of a well-understood communication protocol to enable
the efficient and accurate routing of data from any point in the system to any other point [17].

Some blockchain platforms, like Ethereum and Dash, take advantage of these P2P characteristics to
improve transaction processing and governance. In these ecosystems, the supernodes often
contribute to the decentralized decision-making processes that are fundamental to blockchain
design. They do this by partaking (or not) in three main ways: consensus voting (which often occurs
at multiple levels in governance hierarchies), ledger maintenance (wherever it might occur in peer
or supernode space), and smart contract execution functions (again, this could occur anywhere in
the peer:supernode space).

6. SHA-256

Secure Hash Algorithm 256 (SHA-256) is a member of the SHA-2 cryptographic hash function
family. Its main purpose is to ensure the integrity and security of digital information. From a
mathematical standpoint, a hash function takes an input of arbitrary length and transforms it into a
fixed-length output (or "digest™). The output is unique to that specific input. SHA-256 does this
with a 256-bit (32-byte) output. No matter what you give it, as long as it's within the limits of the
function, the output will always be 256 bits long. (And yes, that includes anything from a single
character to a massive set of "data".) One good property of a secure hash function is that you should
get a completely different output if you change even one tiny little bit of the input [18].

SHA-256 functions by combining several types of operations—specifically, Boolean logic
operations like AND (A), OR (Vv), and XOR (€))—with bitwise shifts, message scheduling, and
modular arithmetic. These operations are carried out in a series of 64 rounds, each reinforcing the
complexity and security of the digest. As in all secure hashes, this complexity is meant to defeat
attempts to find weaknesses that would let an attacker reverse-engineer either the hash or the
original message [19].

While such attacks remain computationally infeasible with current technology, their theoretical
implications necessitate careful consideration. Pre-image attacks are thwarted by the very nature of
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the one-way function. Even so, SHA-256 has a lot of built-in complexity to resist the most well-
known methods of cryptanalysis.

In a pre-image attack, a person with ill intent tries to reverse-engineer the original input from a hash
output they already know. What makes this attack on SHA-256 so computationally infeasible is its
pre-image resistance. Consequently, people using current technology might find it next to
impossible to succeed at this task. On the other hand, collision attacks aim to find two different
inputs that yield the same hash output. If these ill-intentioned individuals were to succeed at this
task, they might substitute some data for something else while preserving the hash, which is what
would compromise data integrity [20].

A more subtle threat is the birthday attack, which uses probability theory to find hash collisions
faster than the brute-force methods that we might otherwise use. Based on the famous birthday
paradox, this attack shows that in a dataset of just 23 elements, there's better than even odds that
two different items will have the same hash value. While the birthday attack demonstrates
something important about the design of hash functions, it is not a method of attacking them that
"Concerns regarding the scheme proposed by Pinkas and Kohno primarily stem from its
impracticality for real-world deployment. At the other end of the spectrum, the primary threats
involve the occurrence of random collisions and the deliberate generation of malicious collisions,
the SHA-256 function is a fundamental component of today's cryptographic protocols. This is
especially true in blockchain systems, where it plays several key roles. For one, it supports the
"digital signature” mechanism used in blockchain systems. SHA-256 also serves to ensure
"transaction integrity.” Blocks in the blockchain are made up of SHA-256 hash values in such a way
that an invalid block can easily be detected.

7. Merkle Trees

The Merkle Tree, also known as a binary hash tree, is a hierarchical data structure designed to
efficiently and securely summarize and verify the integrity of large datasets.

First described by Ralph Merkle in the late 1970s, a Merkle tree is now the basis for many of
today's cryptographic applications, especially in blockchain technologies [21]. Structurally, a
Merkle tree is an inverted tree, with the individual data blocks hashed at the leaf level. Each non-
leaf node represents the hash of the concatenated hashes of its child nodes, working up to a single
value at the top known as the Merkle root. This structure permits exceedingly efficient checking
operations. If one has n elements, one can confirm the inclusion of a specific data block in a Merkle
Tree using only log,(n) steps and a few operations that are nearly constant in number. Because of
this logarithmic complexity, Merkle Trees are very scalable and, therefore, appropriate for verifying
large amounts of data in distributed systems.

Peer-to-peer (P2P) networks use Merkle Trees to guarantee that the data sent over the network is
intact and in its original form when it reaches its destination. They allow the nodes in the network to
check the integrity of the received files or data segments, ensuring that these items are authentic and
have not been tampered with during transmission. Having one of the most profound effects on P2P
networks, Merkle Trees allow them to achieve a certain level of security. However, another area of
significant impact is in blockchain technologies such as Bitcoin and Ethereum. Unlike the P2P
networks in which they might exist, in these ecosystems, the Merkle Trees themselves are not the
secure components. Instead, they serve as a highly efficient way of compactly representing the huge
number of transactions that take place within the system [22].

Each transaction gets hashed. Then, the hashes of pairs of transactions are combined and hashed
again, which produces the first internal node of the tree. The process continues. The resulting items
are carefully and serially combined until the top node (the [[merkle root]]) is reached. This way of
going about things achieves two things. First, it has a security effect: going from one node of the
tree to the next, it becomes more and more difficult to alter anything with it being noticed. If
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changes are made, it will become apparent when checking the hashes of the first combination of
things that were supposed to have been combined. Second, it saves space [23].

The Merkle root allows quick checks to see if a transaction is part of a dataset without having to
look through the entire dataset. This check is what | mean by verifying inclusion. It is done with the
level of a hash function. Thus, the basic structure of a Merkle root and its workings all revolve
around hashing. (The same is true for its reverse operation, hashing in the direction toward the
transaction.) Two properties of hashing are what make this inclusion check work so well. Scaling
blockchain networks increases the significance of Merkle Trees. They are used to maintain trust and
consistency across distributed ledgers. Their effectiveness can be attributed to their strong
mathematical foundations and efficient utilization of computational resources. This indicates that
they are both memory-efficient and computationally lightweight, requiring minimal storage and
processing resources.

8. Merkle Patricia Tree

In the case of the Ethereum blockchain, the foundation data structure that encodes and manages the
state of the network is called the Merkle Patricia Tree (MPT). The MPT is a hybrid structure, part
Merkle Tree and part Patricia Trie (or Radix Tree). For readers unfamiliar with the terms 'Radix
Tree' or 'Prefix Tree," it is important to note that these refer to the same underlying data structure as
the Patricia Trie, albeit under different nomenclatures [24].

A Patricia Trie organizes data so that each key is represented as a path through the tree, allowing
nodes with overlapping prefixes to share branches. This structure is highly memory-efficient and is
just right for applications in which rapid prefix matching is essential. When this concept is
coordinated with Merkle hashing, each node in the Merkle Patricia Tree is given a cryptographic
hash, specifically the SHA-3 (Keccak-256) hash, that is based on the contents of that node. These
hashes act both as unique keys for database storage and as verifiable summaries of the contents of
the nodes [25].

Ethereum uses MPTs to manage the whole system state, comprising account balances, smart
contract storage, and other blockchain data. This state is stored in key-value databases, with Geth
(Go-Ethereum) using LevelDB and Parity using RocksDB. Both these database engines map
directly to the MPT structure [26]. The keys in the Ethereum state trie are expressed in nibbles
(half-bytes), which allows each node in the trie to branch into a maximum of 16 children. Nodes
without children are designated as leaf nodes, each of which contains a path and an associated value
[27].

In addition to leaf and branch nodes, Ethereum employs extension nodes as an optimization for
scenarios when a branch node has only one child. If this optimization is not used, the path from the
root of the trie to this child would be represented with a series of branch nodes. Instead, with
extension nodes, a single node represents the shared part of the path from the root to the child, plus
a hash of the child. This is only one example of an optimization used in the Ethereum trie.

Ethereum uses a scheme that is based on prefix encoding to differentiate leaf nodes from extension
nodes. When the path in a leaf node has an even count of nibbles, a prefix of 0x20 is applied; when
the count is odd, 0x30 is used. For extension nodes, a prefix of 0x00 is used for even-numbered
nibbles and a prefix of 0x10 is used for odd-numbered counts. This prefixing scheme ensures that
Ethereum's state data can be traversed and verified in a consistent and efficient manner, contributing
to the platform's overall scalability.

9. Bloom Filters

One important concept associated with Merkle Trees—especially in blockchain and distributed
systems—is the Bloom filter. This is a space-efficient, probabilistic data structure that tests whether
an element is a member of a particular set. Its unique feature lies in its asymmetrical error model: a
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Bloom filter can conclusively determine when an element is not present in a dataset, but when it
indicates presence, there remains a small probability of a false positive. In contrast, false negatives
are impossible, making it a highly reliable structure for exclusion-based queries [28].

This behavior is achieved through a series of hash functions applied to the input elements. Instead
of storing the data itself, the Bloom filter stores a bit array where each bit is set based on the hash
outputs of the data elements. When querying an element, the same hash functions are applied, and
the corresponding bits in the array are checked. If any of them are unset, the element is definitely
absent. If all are set, the element might be present. The absence of actual data storage and reliance
solely on bit manipulation makes Bloom filters extremely memory-efficient, especially in scenarios
involving large datasets or limited storage capacity [29].

In the blockchain ecosystem, Bloom filters are particularly valuable for light clients—devices or
applications that do not download the full blockchain but instead operate with a subset of the data.
For example, in cryptocurrency wallets, Bloom filters enable efficient transaction lookup by
allowing the client to quickly determine whether a block possibly contains transactions relevant to a
specific address, without having to parse the entire block content. Bandwidth and computation are
both reduced, allowing interactions with the blockchain that are more scalable and far more user-
friendly [30].

Hence, bloom filters act as a real-world optimization trick in distributed networks that handle huge
datasets, deftly balancing size, speed, and accuracy, and as such, are an integral part of many
performance-sensitive blockchain operations.

10. State Machine

The state machine is a basic computational model in computer science. It is a mathematical
abstraction that is used to describe and implement algorithms and control systems, as well as to
characterize complex workflows. At its core, a state machine consists of a set of predefined states,
inputs, and transitions between states, all of which are triggered by some incoming data or event.
With each input, the system advances from one state to another, either deterministically or non-
deterministically, and the incoming data or events control the progression of the system through its
state space [31].

The state machine model has wide-ranging applicability throughout computing, despite being
seemingly simple. It serves a vital role in such areas as compiler construction, network protocol
design, and user interface event handling. In web development, the rendering of HTML content is
inherently sequential and dependent on the structure of the tags. These very true statements set the
stage for the appearance of the next computational model, which indeed needs its own proper
introduction [32].

State machines can be divided into two primary kinds: deterministic and non-deterministic. Each
state in a deterministic finite state machine (DFSM) has exactly one transition for a given input.
This makes the behavior of a DFSM predictable and straightforward to model. In contrast, a non-
deterministic finite state machine (NFSM) allows multiple possible transitions for a single input.
This means the system can take several different paths, none of which can be uniquely identified
until the right output is delivered or the right external action is taken. Appearance-wise, NFSMs are
more complex than DFSMs, no doubt about it. Yet they are conceptually equivalent to DFSMs
because both types of state machines can be used to solve the same set of problems [33].

This abstract model is also useful for representing real-world situations. Take, for instance, the act
of getting into and out of a car. The system can exist in clear states like "outside the car," "opening
the car door,” "inside the car,” or "closing the car door,” with transitions between states prompted
by well-defined physical actions. It doesn't take a genius to see that only certain sequences of
actions can make the system transition between states, which is what makes it a finite state machine.
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In the end, state machines provide a solid method for expressing how systems work— or should
work— when their outputs depend on the current inputs and on the event history. Because of this,
they are vital for not just the analysis but also the design of hardware and software systems.

11. Turing Machine

The theoretical computational model that underpins contemporary computer science and the formal
theory of computation is Alan Turing's 1936 concept of the Turing machine. A Turing machine's
unbounded memory, in the form of infinite tape, sets it apart from finite state machines, which are
limited to a predetermined number of states and memory cells. A Turing machine reads the symbols
on its tape, writes new symbols, or modifies old ones, and performs these tasks in such a way that it
translates the logic of any computable algorithm into a set of mechanical procedures [34].

The defining feature of the Turing machine is its ability to recognize and process non-regular
patterns, making it computationally universal. Any computation that can be described
algorithmically can be executed by a Turing machine, given enough time and memory. A Turing
machine operates, not through a single computation, but through finite (and potentially very large)
sets of instructions (also known as transition functions), which determine its behavior based on the
current state of the machine and the symbol it reads on the tape. Based on these inputs, the machine
can move the tape to the left or to the right, write a new symbol, or transition to a different state
[35].

A physical device is not what the Turing machine is; it is a conceptual model that has played a
crucial role in defining the limits of computation. It is still the centerpiece of conversations about
algorithmic complexity, decidability, and the theory of computation. Many programming languages
and system architectures derive their theoretical basis from their equivalence to a Turing machine—
if not in fact, then in kind. This property of being like a Turing machine is referred to as being
Turing complete.

Although the device is a basic model, it strikingly reveals the core principles of how algorithms
work and prepares the ground for yielding to an understanding of the highly intricate models of
computation that underpin smart contracts in blockchains and virtual machines.

12. Elliptic Curve Cryptography (ECC)

Among the technologies that are basic to today's digital security, Elliptic Curve Cryptography
(ECC) is one of the most complex and sophisticated. In contrast to some earlier concepts that are
perhaps more intuitive, ECC requires truly understanding, at a deep level, both number theory and
the principles of asymmetric cryptography. To really get a grip on what ECC is and the big role it
plays or will play in securing the digital world, one must first understand public key cryptography—
also known as asymmetric encryption.

Public key cryptography works by generating a pair of keys that are mathematically linked: a public
key, which is freely available, and a private key. The private key, which is used only by the owner,
must be kept secret if the system is to remain secure. The keys are linked by a one-way
mathematical function, reversible only in one direction (from private key to public key), with high
efficiency but low feasibility in the opposite direction (from public key back to private key). In
short, it's easy to compute the public key from the private key, but virtually impossible to do the
reverse and compute the private key from the public key. This cryptographic scheme emerged as a
way to eliminate the many shared secret key problems of the long, annoying, and easily forgotten
past [36].

The algebraic structure of elliptic curves over finite fields serves as the basis for the specific
implementation of public key cryptography known as the elliptic curve cryptography (ECC). What
makes ECC different from other public key algorithms, such as the Rivest-Shamir-Adleman (RSA)
algorithm, is that it can reach comparable levels of security using much smaller key sizes, thereby
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enhancing efficiency not only in computation but also in storage. For instance, a 256-bit key used in
the ECC is generally considered to reach the level of security that a 3072-bit RSA key reaches [37].

The cryptographic strength of EC arises from the Elliptic Curve Discrete Logarithm Problem
(ECDLP)—a problem that is currently believed to be computationally intractable. In practical
terms, EC enables secure digital signatures, key exchange protocols (such as ECDH), and
encryption schemes (e.g., ECIES), all while reducing computational overhead. Its adoption has
grown rapidly in modern cryptographic applications, including secure web communications
(TLS/SSL), digital certificates, and blockchain technologies, such as Bitcoin and Ethereum, which
use EC to generate wallet addresses and validate transactions [38].

At its core, ECC stands for a significant step forward in the realm of cryptographic innovation,
blending the unfailing reliability of algebraic structures with the everyday practicality of fast
computing. In an age when networks are everywhere and virtual information is flooding in all
directions, this could hardly be a more urgent necessity.

13. The Byzantine Generals Problem

The Byzantine Generals Problem is a seminal challenge in distributed computing that highlights the
difficulties of achieving consensus among multiple agents—referred to as "generals"—in a system
where components may fail or act maliciously.

The problem was first presented as a thought experiment by Lamport, Shostak, and Pease in the
early 1980s. It illustrates the difficulties of organizing a group when you can't trust the members to
do the right thing because they're not always reliable, they're not always truthful, and under some
conditions, they might betray you [39].

In the allegory, the Byzantine army camped around an enemy city comprises many divisions, each
commanded by a general. In order to successfully attack, the generals must agree on a common
strategy—either attack or retreat—executed simultaneously. However, communication is only
possible via messengers, who may be delayed, intercepted, or corrupted. Moreover, one or more
generals may be traitors attempting to prevent consensus. The core problem lies in enabling all loyal
generals to agree on a plan, even when some actors behave arbitrarily or maliciously.

Multiple protocols have been proposed to address this challenge. Deterministic protocols with a
fixed number of messages often fail because delayed or lost messages can prevent agreement,
especially if a receiver acts based on incomplete information. This breakdown leads to one party
proceeding with the plan while another hesitates, thereby resulting in failure. Non-deterministic and
variable-length protocols, often modeled as branching trees of message sequences, have also been
explored. However, under rigorous analysis, these can be reduced to deterministic protocols that
inherit the same weaknesses, particularly when facing message omission or manipulation. In such
scenarios, the protocol converges into a "null tree,” indicating no valid communication path—a
signal of inherent limitation [40].

To achieve Byzantine Fault Tolerance (BFT), a foundational threshold must be satisfied: the total
number of nodes n must exceed three times the number of potential traitors t, i.e., n > 3t. For
example, with one traitor, a system must contain at least four nodes to reach consensus. If one
general sends contradictory commands to two lieutenants, and they are unable to verify message
authenticity, they cannot identify the traitor, which jeopardizes coordination. However, with a
sufficient number of participants and reliable message validation, consensus becomes achievable.

A proposed corrective action is to use incontrovertible message signatures, which rely on public key
(or asymmetric) cryptography. This allows the recipients to verify not just the content of the
messages they receive (as is already possible with private key, or symmetric, cryptography) but also
the origin and 'chain of custody' of those messages, making impersonation and misinformation
much less likely. But in the context of safety-critical systems, this is not nearly enough.
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This issue made significant progress toward resolution with the development of Practical Byzantine
Fault Tolerance (PBFT) by Miguel Castro and Barbara Liskov. PBFT took the basic idea from
earlier models and made it not only practical and scalable but also robust in the sorts of adversarial,
Asynchronous environments within which such systems are inherently required to operate. Since
then, a nice variety of protocols inspired by PBFT have emerged, Aardvark focuses on enhancing
system robustness under adversarial conditions, while Q/U is designed to achieve high performance
and throughput under standard operational conditions.

14. Double-Spending Problem

The double-spending problem is a key issue in digital currency systems. It is the risk that a single
unit of currency could be spent more than once. While physical currencies inherently avoid this
issue due to their tangible, non-duplicable nature, digital assets—being composed of easily
replicable data—are inherently vulnerable. Traditional financial systems address this risk through
centralized authorities that validate transactions and maintain ledger integrity. However, this
reliance on a trusted intermediary poses risks related to privacy, centralization of control, and
vulnerability to single points of failure [41].

In decentralized systems such as cryptocurrencies, the solution lies in consensus algorithms, which
remove the need for trust in any central actor. Bitcoin, for example, resolves double-spending
through a proof-of-work (PoW) mechanism where network participants (miners) compete to
validate transactions and append them to a shared, immutable ledger. This method ensures that once
a transaction is confirmed by multiple subsequent blocks, it becomes computationally infeasible to
reverse it. Other blockchain systems adopt proof-of-stake (PoS) or hybrid approaches, which assign
consensus privileges based on token holdings or combined metrics to mitigate energy consumption
and enhance scalability.

15. The CAP Theorem

The CAP theorem, formulated by Eric Brewer and later formalized by Gilbert and Lynch,
articulates a fundamental trade-off in distributed data systems: only two of the three properties—
Consistency, Availability, and Partition Tolerance—can be fully achieved simultaneously [42]. In
the context of blockchain, partition tolerance is assumed by design, given that network failures and
asynchronous communication are inherent in distributed networks.

As a result, blockchain systems have to choose between two key system properties: availability and
consistency. Most public blockchain platforms like Bitcoin and Ethereum lean toward availability
and partition tolerance, almost to the point of deferring immediate consistency. You can see this in
the requirement that transactions be confirmed by several subsequent blocks to ensure finality,
which serves to decrease the risks that are associated with temporary forks and with network delays.
Consensus algorithms, like Proof of Work (PoW) and its several variants, play a central role in this
trade-off [43].

16. SPECTRE and the Condorcet Paradox

The SPECTRE protocol (Serialization of Proof-of-Work Events: Confirming Transactions via
Recursive Elections) presents an innovative method for achieving blockchain consensus based on a
blockDAG (Directed Acyclic Graph) structure rather than a linear chain. A significant complexity
in this framework is its link to the Condorcet paradox, from social choice theory. First proposed by
Marquis de Condorcet, the paradox illuminates many an occasion on which collective preferences
can be cyclic, even when individual preferences are not, and never mind what happens when an
individual tries to make a collective decision. This presents a significant challenge to establishing a
consistent block ordering in distributed systems [44].

This paradox applied to SPECTRE reveals how hard it is to find a linear ordering of blocks when
many competing branches exist, each backed by different subsets of nodes. There is no clear
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"Condorcet winner" that would let us achieve consensus easily, and in SPECTRE, achieving this
objective necessitates a design that minimizes complexity, often relying on probabilistic methods or
recursive voting mechanisms to establish order among nodes and blocks when inherent ordering
fails. The complexity of this task increases significantly with the growth in the number of nodes and
blocks [45].

17. Pedersen Commitments

Pedersen commitments are cryptographic constructions widely used in privacy-focused blockchain
systems such as Monero, Zcash, and experimental features in Ethereum. These commitments allow
a sender to commit to a value m using a random value r, without revealing either until a later time.
The commitment is constructed as:

C(m, r) = g¢"m - h”r, where g and h are cryptographic generators in a group where the discrete
logarithm problem is hard [46].

Pedersen commitments are both hiding (the committed value remains secret) and binding (the
committer cannot change the value after committing). These properties make them ideal for
constructing confidential transactions while maintaining verifiability. In blockchain, they are
instrumental in preventing double-spending while ensuring transaction privacy and integrity,
particularly in systems that rely on zero-knowledge proofs.

18. Fungibility and Liveness

In decentralized systems, fungibility and liveness are essential properties. Fungibility refers to the
interchangeability of assets: one unit of a currency should be indistinguishable and equally
acceptable as another. This characteristic is critical for any currency-like function of
cryptocurrencies. However, not all digital assets are fungible. Non-Fungible Tokens (NFTs), for
example, represent unique, indivisible assets such as collectibles, certificates, or identity documents,
and have found use cases in digital art, real estate, and academic credentialing [47].

Liveness, on the other hand, is a property of consensus protocols that guarantees that the system
continues to process and confirm transactions. In contrast, safety ensures that the system does not
reach incorrect states. Many blockchain systems must balance these two. Bitcoin, for instance,
prioritizes liveness via Nakamoto consensus, while protocols like Tendermint focus on safety using
Byzantine Fault Tolerant (BFT) consensus. HotStuff, a protocol proposed by Facebook for the Libra
(now Diem) project, introduces optimizations to improve liveness while maintaining finality by
allowing blocks without validator votes to be resolved later once consensus is reached [48].

19. Transaction and Settlement Finality

Finality in blockchain refers to the assurance that a transaction, once confirmed, cannot be altered or
reversed. This concept is central in financial systems, where operational finality ensures that a
transaction is irreversibly recorded, while settlement finality refers to the legal and contractual
recognition of such completion.

In blockchain networks, finality may be deterministic, probabilistic, or absent. Bitcoin offers
probabilistic finality, requiring multiple block confirmations to reduce the likelihood of reversion.
Ethereum 2.0, with its PoS-based consensus, aims to offer stronger finality guarantees. However,
even centralized systems are not immune to disruptions—from hacking to institutional failure. As
Vitalik Buterin notes, absolute certainty is elusive even in traditional finance, as fraud, technical
errors, or corruption can undermine trust. In blockchain, finality ensures confidence in
transactions—an essential factor for mainstream adoption [49].
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20. Censorship Resistance

Censorship resistance is one of the most valued properties of public blockchain systems. It ensures
that any participant can access and interact with the network freely, without being blocked or
restricted based on identity, location, or political influence. In contrast to permissioned blockchains,
which are controlled by centralized authorities, public blockchains such as Bitcoin and Ethereum
allow anyone to participate, with access only constrained by the protocol's consensus rules. This is a
pretty significant property, especially in places like authoritarian regimes or economically unstable
regions, where access to financial systems is often limited. Access is always more significant when
participation is open and censorship is resisted. Bitcoin's value proposition is particularly appealing
in such scenarios. Indeed, There has been a notable increase in the adoption of Bitcoin in repressive
regimes and economically unstable countries—such as Venezuela and Iran—where local currencies
are experiencing hyperinflation or where access to the global financial system is restricted due to
international sanctions [50].
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