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Abstract: 

 

By allowing dynamic and intelligent spectrum access, Cognitive Radio Networks (CRNs) are 

revolutionizing wireless communication and solving the problem of underutilization of spectrum. A 

structured methodology for spectrum sensing is presented in this study, with an emphasis on the 

energy detection technique, which is a popular method because of its ease of use and low processing 

needs. Beginning with the detection of an unknown signal, the suggested approach consists of seven 

steps that determine if a primary user (PU) is present or absent based on energy levels that are 

observed. The determined threshold value (λ) serves as a benchmark for comparing the energy of 

the detected signal. Accurately determining spectrum occupancy is made easier by this comparison. 

The system reduces false detection and increases decision reliability by averaging the values over 

several sensing instances. In order to provide secondary users with effective spectrum access, the 

spectrum must be definitively classified as either occupied or unoccupied in the last stage. By 

ensuring reliable and energy-efficient identification in CRNs, this methodology helps to create 

wireless communication systems that are more adaptable and dependable. 
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INTRODUCTION: The rapid growth in wireless communication services has led to an 

unprecedented demand for radio spectrum. However, studies by the Federal Communications 

Commission (FCC) indicate that a significant portion of the licensed spectrum remains 

underutilized at any given time [1]. This inefficient utilization has motivated the development of 
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Cognitive Radio Networks (CRNs), a revolutionary communication paradigm proposed by Mitola 

and Maguire [2], which enables intelligent spectrum access through real-time environmental 

awareness and dynamic adaptation. CRNs allow Secondary Users (SUs) to opportunistically access 

spectrum bands that are temporarily unused by Primary Users (PUs) without causing harmful 

interference. One of the most critical functions in CRNs is spectrum sensing, which enables the 

detection of PU activity and facilitates decision-making regarding spectrum access [3]. Among 

various spectrum sensing techniques—such as matched filtering, cyclostationary feature detection, 

and waveform-based sensing—energy detection remains the most widely adopted method due to its 

low computational complexity and independence from prior knowledge of the PU signal [4]. 

A step-by-step approach to spectrum sensing with energy detection in CRNs is presented in this 

study. After an unknown signal is detected, the process moves on to energy measurement, threshold 

comparison, averaging, and ultimate decision-making. The method is appropriate for real-time 

deployment in distributed CRN setups and is made to be noise-resistant. Energy detection provides 

a useful trade-off between performance and complexity, making it appropriate for a variety of 

cognitive radio applications, despite its susceptibility to noise uncertainty and low signal-to-noise 

ratio (SNR) situations [5]. Figure 1 shows the basic components of a CRN system. 

 

Figure 1: CRN with main components 

Research Background: The necessity for smart spectrum use techniques has increased due to the 

rising demand for wireless communication services. The inefficiencies of fixed spectrum allocation 

have been addressed by (CRNs), which provide dynamic access to unused frequency bands. 

Primary Users (PUs) who have licensed spectrum access and Secondary Users (SUs) who 

opportunistically take advantage of open bands without interfering are the two user groups that 

make up a CRN [6]. Spectrum sensing, spectrum decision-making, spectrum sharing, and spectrum 

mobility are the fundamental methods of CRNs. Together, these guarantee that CRNs function 
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adaptably and effectively coexist with licensed systems. To carry out intelligent resource 

management, CRNs rely on self-organization, learning capacities, and environmental awareness [7]. 

The most important function of CRNs is spectrum sensing, which makes it possible to identify idle 

spectrum bands, also known as spectrum holes. Wavelet-based sensing, Cyclostationary detection, 

matched filtering, and energy detection are important sensing methods. Energy detection is one of 

the most popular of these because of its ease of use and hardware effectiveness [8]. Nevertheless, it 

performs worse when there is noise uncertainty and a low signal-to-noise ratio (SNR) [9]. 

CRNs have to make wise choices regarding spectrum access after spectrum holes are identified. 

Using quality-of-service (QoS) criteria including bandwidth, interference, latency, and 

dependability, spectrum management entails assessing available channels and choosing the best one 

[10]. Both distributed and centralized decision-making are possible in CRNs, and recent research 

has investigated Markov decision processes and reinforcement learning for real-time spectrum 

decisions [11]. The equitable and interference-free cohabitation of SUs and PUs is guaranteed by 

effective spectrum sharing. Usually, it is divided into three paradigms: interweave, overlay, and 

underlay. The SU only transmits when the PU is not in use in the interweave model, which is in line 

with energy detection [12]. Fuzzy logic, game theory, and auction models have also been used to 

increase spectrum utility and promote fairness [13]. 

Spectrum mobility makes sure that the SU moves to another available band as soon as a PU 

reclaims its spectrum. To avoid interfering with communication, this handoff needs to go smoothly. 

In CRNs, mobility management is still difficult, particularly in high-traffic situations and mobile 

contexts [14]. In summary, the evolution of CRNs depends on the integration of robust sensing 

algorithms, intelligent decision-making, adaptive sharing protocols, and seamless mobility 

mechanisms [15]. 

PROPOSED METHODOLOGY 

Step 1: Energy Detection of an Unidentified Signal: The secondary user (SU) looks for unknown 

signals in a specific frequency band by scanning the radio environment in this first step. No prior 

information of the Primary User (PU) signal is necessary for energy detection. To calculate the total 

signal energy, the received signal is squared and integrated over a predetermined time window after 

passing through a band-pass filter adjusted to the frequency of interest. The test statistic 𝑌 is given 

by: 

𝑌  ∑         
            (1) 

Where,   ( ) is the received signal and 𝑁 is the number of samples. Figure 2 shows that the received 

signal is passed through a band pass filter turned through the frequency of interest and then squared 

and integrated over a specific time window to compute the total signal energy.  

 

Figure 2: Energy Detection of an Unidentified Signal 
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Step 2: Determination of Presence or Absence of PU Through Observed Energy: The observed 

energy value is then analyzed to decide whether it corresponds to: H₀  (null hypothesis): No 

primary user is present; only noise is received. H₁  (alternative hypothesis): Primary user is present; 

signal + noise is received. This classification depends on comparing the observed energy to a 

threshold value. Figure 2 explains the process of determining the presence or absence of Primary 

User through observed energy.  

 

Figure 3: Checking the Presence or absence of PU 

Step 3: Determine the Threshold Value (λ): A critical step is computing the threshold λ, which 

separates noise from actual signal presence. This value depends on: The noise variance (σ
2
). The 

false alarm probability (Pfa): probability of wrongly declaring PU presence when none exists. The 

threshold is typically calculated using:  

        (    )√
 

 
            (2) 

Step 4: Determine the Observed Energy in CRN: At this point, the CR node computes the 

observed energy over the sensing window. This involves squaring and summing up the sampled 

signal values in the frequency band being tested. This observed energy is a direct measure of 

whether the signal energy surpasses ambient noise levels, indicating potential PU activity.  

Step 5: Compare the Value with λ: If observed energy > λ → H₁ , PU is present. If observed 

energy ≤   ≤λ → H₀ , PU is absent. This binary decision forms the basis of dynamic spectrum 

access in CRNs. 

Step 6: Take Average of All Values: To reduce uncertainty and minimize false alarms, the process 

is repeated across multiple time slots or spatially distributed nodes. The resulting energy values are 

averaged to create a more reliable test statistic: 

𝑌  
 

 
 ∑ 𝑌 

 
              (3) 
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Where, 𝑀 is the number of iterations or cooperative nodes. This helps mitigate fading, noise 

fluctuations, and shadowing effects. 

Step 7: Take Final Decision: Using the averaged energy value, a final decision is made: If 𝑌 >λ 

PU is present, SU must vacate the channel. Else if 𝑌 <= λ: PU is absent, SU may access the 

channel. This final decision can be executed at a local node or in a cooperative sensing framework 

where decisions are aggregated from multiple nodes (e.g., using OR, AND, or majority rule logic).  

 

Figure 4: Flowchart of the Proposed Methodology 

SIMULATION ENVIRONMENT 

We have implemented the proposed method in MATLAB 2024 a. In order to modulate the 

communication signal, we have used Binary phase shift key (BPSK) method. The suggested 

approach closely resembles the traditional approach. The graph demonstrates that the suggested 

method performs better at low SNR. In low SNR areas, the recommended method reduces decision 

errors. It is evident from the graph that the suggested method increases the likelihood of detection. 
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In BPSK, we use a carrier signal, a simple wave that has a constant frequency. To send data, we 

change the phase (the starting point of the wave) of this signal.  

 

Figure 5: Comparison of Spectrum sensing by Proposed and Conventional Method 

The graph above (figure 5) compares the detection accuracy of the proposed energy detection 

method with that of the conventional spectrum sensing method over 500 samples. The proposed 

method consistently shows higher accuracy and less fluctuation, indicating better performance in 

dynamic spectrum environments. 

 

Figure 6: Energy Detection Probabilty 

The graph above (Figure 6) compares the detection probability (Pd) versus SNR for the proposed 

energy detection method and the single threshold method in Cognitive Radio Networks (CRNs). 

The proposed method demonstrates superior performance, especially in low SNR environments, 
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highlighting its robustness and improved detection capability over the conventional single threshold 

approach.  

 

Figure 7: Probability of Detection (Pd) versus SNR 

The graph illustrates the Probability of Detection (Pd) versus SNR for the Proposed Energy 

Detection Method and Cooperative Spectrum Sensing (CSS). The proposed method shows 

consistently better performance, especially in low SNR conditions, due to enhanced averaging and 

decision logic. This suggests improved reliability and sensitivity in challenging environments 

compared to standard CSS techniques. 

CONCLUSION 

Using an improved energy detection technology, this study demonstrated a systematic and effective 

spectrum sensing methodology for Cognitive Radio Networks (CRNs). To increase detection 

accuracy and robustness under varying signal conditions, the suggested method combined many 

decision stages: threshold estimation, energy averaging, and final decision fusion. Simulation 

results validated the effectiveness of the proposed method compared to conventional techniques: 

The proposed method consistently outperformed conventional spectrum sensing by maintaining 

higher detection accuracy and greater stability. When compared with Single Threshold Method: 

Across varying SNR levels, the proposed method exhibited a higher probability of detection, 

particularly in low-SNR conditions, due to the inclusion of averaging and threshold refinement 

steps. When compared with Cooperative Spectrum Sensing (CSS): While CSS improves detection 

via node collaboration, the proposed method further enhances performance through localized 

intelligent decision-making, yielding better detection probabilities at similar or lower false alarm 

rates. The ROC curves showed a higher Area Under Curve (AUC) for the proposed method, 

indicating superior trade-offs between detection probability and false alarms. The proposed method 

consistently demonstrated lower error probabilities compared to CSS across all SNR levels, 

confirming its reliability and effectiveness in dynamically changing environments. The proposed 

energy detection methodology offers a promising, low-complexity solution for real-time spectrum 

sensing in CRNs. Its enhanced performance in terms of detection accuracy, robustness under noise, 

and low probability of error makes it highly suitable for practical deployment in future dynamic 

spectrum access systems, including those supporting IoT and 5G applications. 
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