Valeology: International Journal of Medical **Anthropology and Bioethics** (ISSN 2995-4924) VOLUME 02 ISSUE 05, 2024

IMPROVING THE EFFECTIVENESS OF TETRACYCLINE DENTAL TREATMENT

Toshtemirova Mohira Mahmud qizi Samarkand State Medical University

Mirzabekov Bahodir Rahmatullo oʻgʻli Samarkand State Medical University

Bozorov Asilbek Baxtiyor oʻgʻli Samarkand State Medical University

Jumanazarova Madinahon Qahramon qizi Samarkand State Medical University

Tolipova Bahora Jonibekovna Samarkand State Medical University

Abstract:

In today's society, which places a lot of importance on attractive appearance, teeth that have a color different from the generally accepted norm become a common complaint of dental patients. The severity of tooth discoloritis depends on what caused it. The factors that cause teeth to lose their natural color are diverse. Treatment options for teeth with discolored teeth vary depending on the cause of the disease. Before developing a treatment plan, the doctor should try to find out the reason that led to the discoloration of the teeth.

Keywords: tetracyclines, the effect of tetracyclines, effect, teeth, treatment

Introduction

Tetracyclines were developed in 1948 as broad-spectrum antibiotics that can be used to treat common infections in children and adults. One of the side effects of this group of substances is their incorporation into tissues with the formation of calcinates. The first mention of the discoloration of teeth in children caused by tetracyclines dates back to 1956, and subsequently a number of reports appeared in which tetracycline led to enamel hypoplasia. Nowadays, it is known that this group of antibiotics has the ability to chelate calcium ions and thus integrate into teeth, cartilage and bones. Although this side effect has been repeatedly demonstrated in children, there are also some reports of teeth staining with tetracycline and derivatives in adults.

Pharmacology of tetracyclines

Tetracyclines are broad-spectrum antibiotics with activity against both Gram-positive and Gramnegative bacteria, as well as mycoplasma, rickettsia and chlamydia infections. All tetracycline compounds consist of four condensed cyclic rings, which gave the name to tetracyclines. Tetracycline derivatives consist of only slightly modified chemical components associated with this basic ring structure. Tetracycline, oxytetracycline, chlortetracycline, doxycycline and minocycline are commonly used in this capacity. They all have a similar spectrum of activity, and resistance to one may indicate resistance to all of them. Tetracyclines are considered bacteriostatic, but in high concentrations they can have a bactericidal effect. The drugs bind to the 30S subunits of bacterial ribosomes and specifically inhibit the binding of aminoacyl-t-RNA to the acceptor site of the ribosome and, thus, inhibit protein synthesis in sensitive microorganisms. These antimicrobials are usually taken orally, but absorption from the gastrointestinal tract is incomplete and unstable, and it is negatively affected by the presence of food and bivalent or trivalent cations. Two exceptions are minocycline and doxycycline, which are well absorbed in the gastrointestinal tract even in the presence of food. These drugs penetrate the placenta and can have a toxic effect on the developing fetus, therefore they are contraindicated during pregnancy. Toxic effects on the developing fetus include discoloration of teeth, enamel hypoplasia and inhibition of bone growth by 40%. The binding of tetracyclines to plasma proteins is highly variable, but the distribution is widespread and occurs in all tissues and fluids, including bones and teeth. Tetracyclines are excreted in urine and faeces, with the urinary tract being the most important for most of these drugs. The drugs should not be given to nursing mothers, as they are also excreted in breast milk. Pregnant women are particularly susceptible to tetracycline-induced liver damage.

The effect of tetracyclines on the bones and mucous membrane of the oral cavity

These drugs have an affinity for calcified tissues, are deposited and stored in osteogenetic areas of normal bone. The affinity for mineralizing tissue is the result of binding to calcium to form the tetracycline-calcium orthophosphate complex. The faster the mineralization rate, the more tetracycline is deposited. When exposed to ultraviolet (UV) light on a bone stained with tetracycline, it exhibits yellow fluorescence. Consequently, tetracyclines are used in bone research as a vital fluorescent dye to measure the rate of bone formation. These agents usually remain in the ossification zones for some time after systemic administration. Minocycline hydrochloride, a semisynthetic tetracycline derivative often used to treat acne, has been shown to cause pigmentation of various tissues, including skin, thyroid gland, nails, sclera, teeth, conjunctiva, tongue and bones. A remarkable side effect of minocycline on bones is the occasional occurrence of "black bones". The bone stained with minocycline does not fluoresce in UV light. Bone pigmentation is most common under the translucent mucous membrane of the anterior alveolar process of the upper and lower jaw, followed by the mucous membrane of the posterior tongue and hard palate. The attached gum, tongue and mucous membrane of the cheeks are usually not affected, the incidence increases with prolonged use, and about 10% of patients who took minocycline for more than one year developed black bone pigmentation in the oral cavity. Moreover, this figure increased to 20% after 4 years of taking minocycline.

The effect of tetracyclines on teeth

The ability of tetracycline to stain teeth during odontogenesis has been well known for almost five decades. Tetracyclines can cause discoloration and hypoplasia of the enamel of both milk and permanent teeth if they are used during the period of tooth development. The main factors

permanent, varies from yellow or gray to brown depending on the dose or type of drug received in relation to body weight. After teething and exposure to light, the fluorescent yellow discoloration gradually changes over months or years to a non-fluorescent brown color. The labial surfaces of the yellow-colored front teeth will darken over time, while the palatine surfaces and buccal surfaces of the chewing teeth will remain yellow. This transformation is probably the result of the oxidation of tetracycline under the action of light. Calcification of baby teeth begins at about the end of the fourth month of pregnancy and ends at about 11-14 months of age. Permanent teeth begin to calcify after birth and are not affected by tetracyclines during the prenatal period. Calcification of permanent teeth is completed by the age of 7-8, with the exception of the third molar ("wisdom teeth"). Therefore, tetracyclines should be avoided for pregnant women in the 2nd or 3rd trimester of pregnancy and children under 8 years of age, as this can lead to discoloration and enamel hypoplasia. A link between staining and enamel hypoplasia as a result of high doses of tetracycline during calcification is possible, but also controversial. Enamel hypoplasia can also be a consequence of childhood disease, hereditary defects in enamel formation, or prematurity of the child; all of them are known to cause enamel defects. Tooth discoloration in adults has also been reported after prolonged use of tetracycline and minocycline. It is reported that the prevalence of tetracycline and minocycline staining is 3-4% and 3-6%, respectively. Staining with minocycline is characterized by darkening of the crowns from blue-gray to gray and "black" or "green" darkening of the roots of erupted teeth. Minocycline differs from other tetracyclines in that it is well absorbed from the gastrointestinal tract and chelates with iron to form insoluble complexes, which can provoke tooth staining. Iron is one of the three theories of the mechanism of discoloration of minocycline. Other theories relate to external and internal factors. The external theory is based on the fact that minocycline is released in high concentrations in the gingival fluid and has the ability to mineralize enamel in vitro. This process may allow minocycline to stain or etch enamel by diffusing through the pulp or affecting odontogenesis. An internal theory suggests that as minocycline is absorbed, it binds to plasma proteins and is distributed to various tissues of the body. Some of these tissues have a high affinity for minocycline, for example, collagen tissue present in pulp, dentin, cement and bone. In these tissues, the drug is then oxidized and converted into a pigmented by-product. Based on the theory that the pigment is a product of an oxidation reaction, a hypothesis has been hypothesized and experimentally demonstrated that an antioxidant such as vitamin C can block the formation of minocycline pigment in an animal model. This conclusion needs to be confirmed by additional longitudinal studies. Discoloration caused by tetracycline/minocycline cannot be reversed. Staining of permanent teeth creates an aesthetic and psychological problem for which patients may seek advice and treatment to improve their appearance. Treatment may include bleaching of vital or pulpless teeth, which will

influencing the amount of tetracycline deposits are dosage, duration of treatment, stage of mineralization of teeth and activity of the mineralization process. The color change, which is

lighten the discoloration but leave a translucent appearance. Since tetracycline staining is natural, the bleaching method is most often partially successful. Other options include placing composite resins or porcelain laminated veneers or full coverage porcelain crowns to physically cover the teeth.

Conclusions.

The medical and dental literature contains extensive scientific evidence that both tetracycline and its derivatives cause their own staining of the oral cavity and teeth in children during osteogenesis and odontogenesis. Therefore, tetracyclines are contraindicated during pregnancy and in children under 8 years of age. It has also been reported that tetracycline and minocycline cause internal staining of teeth and oral cavity in the adult population. The prevalence of these side effects is approximately 3-6%. Most of the literature consists of descriptions of clinical cases. There are several longitudinal studies. Longitudinal clinical trials can provide comprehensive information on the prevalence, severity, etiology, and clinical picture of tetracycline and minocycline staining in the adult population, as well as how it can be dealt with most effectively.

References

- 1. Atkinson HF, Hartcourt JK. Tetracyclines in human dentine // Nature 1962; 195: 508–509.
- 2. Baughman R. Testing your diagnostic skills. Case, 1. Minocylcine staining // Todays FDA 2001; 13: 23.
- 3. Bevelander G, Rolle GK, Cohlan SG. The effect of the administration of tetracycline on the development of teeth // J Dent Res 1961; 40: 1020–1024.
- 4. Cheek CC, Heymann HO. Dental and oral discoloration associated with minocycline and other tetracycline analogs // J Esthet Dent 1999; 11: 43–48.
- 5. Cohen BD, Abrams BL. An unsual case of stained roots of unerupted third molars // Gen Dent 1989; 37: 342–343.
- 6. Cohlan SQ. Tetracycline staining of teeth // Teratology 1977; 15: 127–129.
- 7. Conchie JM, Munroe JD, Anderson DD. The incidence of staining of permanent teeth by the tetracyclines // Can Med Assoc J 1970; 103: 351–356.
- 8. Dayan D, Heifferman A, Gorski M, et al. Tooth discoloration- Extrinsic and intrinsic factors // Quintessence Int 1983; 14: 195–199.
- 9. Zoyirov Tulqin Elnazarovich, Toshtemirova Mohira Mahmud qizi, & Xoliqov Mustafo Aliqul o'g'li. (2024). TREATMENT OF ACUTE PULPITIS IN PATIENTS WITH AIDS BY MEANS OF VITAL AMPUTATION. Academia Repository, 5(03), 90-93. Retrieved from https://academiarepo.org/index.php/1/article/view/636
- 10. Zoyirov Tulqin Elnazarovich, Toshtemirova Mohira Mahmud qizi, Juraqulov Abbos G'ofurovich, & Xudoyqulov Sardor Sobirovich. (2024). Changes in the Jawbone and Teeth in Arthrosis of the Temporomandibular Joint. *International Journal of Scientific Trends*, 3(3), 32– 35. Retrieved from https://scientifictrends.org/index.php/ijst/article/view/248
- 11. Otabek Turagulov, Jasmina Umrullaeva, Tulgin Zoyirov, & Mohira Toshtemirova. (2024). CHANGES IN THE ORAL CAVITY DUE TO DISEASES OF THE DIGESTIVE SYSTEM. Journal of Academic Research and Trends in Educational Sciences, 3(1), 98–102. Retrieved from http://www.ijournal.uz/index.php/jartes/article/view/909
- 12. Qizi, T. M. M., & Ugli, Y. S. M. (2023). IMPROVING THE TREATMENT OF PATHOLOGICALLY ALTERED DENTAL STATUS IN ELDERLY AND SENILE PEOPLE WITH PULMONARY TUBERCULOSIS. International Journal of Medical Sciences And *Clinical Research*, *3*(12), 24-27.
- 13. Kakhorovna, R. B., & Khikmatullayevna, M. M. Toshtemirova Mokhira Makhmud kizi.(2023). IMPROVING THE SURGICAL METHOD OF SCAR MICROSTOMY. Galaxy International Interdisciplinary Research Journal, 11 (9), 300–304.