Valeology: International Journal of Medical Anthropology and Bioethics (ISSN 2995-4924) VOLUME 03 ISSUE 3, 2025

THE INTERACTION OF QUANTUM DOTS WITH MONOLAYER GRAPHENE

Qusay Fadhil Yaseen Alaati

Basra Education Directorate, Iraq

Hasabalrasoul Gesmallah Ismail Hamza

Gezira University, Faculty of Education, Department of physics and mathematics, Sudan

Mubarak Dirar Abdullah Yaagoup

Sudan University of Science and Technology, Faculty of Science, Department of physics, Sudan

Fadel H. K.

University Of Basrah, Iraq

Abstract:

A quantum dot (QDs) incorporated monolayer graphene (Gr) has shown promise in a variety of potential uses in computing applications, including optoelectronics, sensors, and the development of quantum computers. Here we review the nature of the basic electronic, optical and mechanical interactions between QDs and graphene components including charge and energy transfer mechanisms, which may significantly influence the performance of devices incorporating these materials. We also review recent research on QD-graphene hybrids for next-generation photodetectors, photovoltaics, and single-photon emitters and computational and experimental methods for probing their interactions. Stability, scalability, and biocompatibility challenges are also covered here, as well as prospects for future research and technological applications.

1. Introduction

Quantum dots (QDs) are another area of intense study and their interaction with a monolayer of graphene (Gr) has emerged as a topical area of research in nanotechnology due to future prospects for use in electronic and optoelectronic devices. Graphene, a 2D carbon allotrope, possesses outstanding electronic properties like elevated carrier mobility and tunable conductivity. On the contrary, QDs are semiconductor nanocrystals with a size-dependent electronic state that outlets distinctive optical properties. Research has shown that hybrid systems made by combining these two kinds of nanomaterials achieve greater charge transfer and are particularly suited for use in photodetectors, solar cells and biosensors. This review covers the QD-graphene interaction mechanisms, experimental and computational studies, and recent advances in QD-graphene related technologies.

Monolayer graphene in the aspect of QDs can be an inspiring concentration around nanotechnology on its applications within optoelectronics, sensors and quantum information processing. Graphene is a single layer of carbon atoms arranged within a two-dimensional honeycomb (or hexagonal) lattice that displays excellent electronic properties like extremely high carrier mobility and adjustable conductivity (Novoselov et al., 2004). Conversely, quantum dots are semiconductor nanocrystals that confine electrons in three directions leading to quantized energy levels and finally size-dependent optical properties (Alivisatos, 1996).

Because of the different properties gained by each of these nanomaterials, hybrid systems can have even better properties when these two nanomaterials are combined. For example, one efficient coupling that is pursued is QDs with graphene, which enables a charge transfer that is of interest for photovoltaic applications (Kamat, 2010). Additionally, the photoluminescence properties of QDs can therefor be altered by graphene, making the creation of sensitive biosensors (Zhang et al., 2012).

In this regard, other QD-graphene hybrids have been recently constituted and investigated. For example, Freitag et al. (2016) demonstrated formation of quantum dots in monolayer graphene by combining uniform magnetic field with electrostatic confinement and popped out orbital and valley splittings (Freitag et al., 2016). Similarly, Velasco et al. (abbreviation), which is the ascribed abbreviation) employed scanning tunneling microscopy to report on the feasibility of graphene quantum dots as new magnetic field sensors, describing them as being sensitive to applied magnetic fields (Velasco et al., 2023).

This work further expands upon the interfacial chemistry of QDs on monolayer graphene, but the essential understanding of the underlying fundamental interactions at these interfaces remains poor. The presented idea would also be relevant and applicable directly to QD-graphene systems and to a more abstract level in the nanotechnology, this thesis would accordingly adress the QD-graphene systems electronic, optical and mechanical interactions.

Research has more recently redefined the capabilities of QD-graphene hybrids. Studies by Velasco et al are an example of this (2023) have demonstrated the formation and direct imaging of relativistic artificial molecules composed of two coupled graphene quantum dots with tunable distance, laying the foundations for molecular electronic circuitry (Velasco et al., 2023). In addition, Zhang et al. performed a first-principles study (2024)explored optoelectronic properties in PbS QD/graphene systems that are characterized with emergent strong interactions, now deemed a key ingredient for potentially achieving high-performance photodetectors and image sensors in the near future (Zhang et al., 2024). Graphene quantum dots, including N-doped graphene quantum dots

(Zhu et al., 2020), have also now been gaining attention in the bio imaging field because they possess improved photo stability and tunable fluorescence properties.

2. Mechanisms of Interaction

The coupling between QDs and graphene occurs mainly through charge and energy transfer processes, which play an important role in affecting the electronic and optical properties of the hybrid system.

- ➤ Charge Transfer: The high electron mobility of graphene facilitates the transfer of photoexcited carriers from QDs to graphene, reducing recombination losses and enhancing device efficiency. It is a common process in photodetectors and solar cells(Zhu et al., 2020).
- ➤ Förster Resonance Energy Transfer (FRET): QDs non-radiatively transfer excitonic energy to graphene and subsequently lead to photoluminescence quenching, which can be utilized for bio sensing applications.
- ➤ Plasmonic Enhancement: Surface plasmon interactions in graphene with quantum dots (QDs) boost optical absorption and emission properties, important for light-emitting devices and imaging technologies.
- ➤ Graphene Doping Effects: The tunable charge transfer processes, due to the peculiar band structure of graphene, in turn affects the doping behavior and ultimately modulates the functionalities of the devices.

The Applications of QD-Graphene Hybrids

3.1 Optoelectronics

QD-graphene hybrids have been focused on as great candidates in photo detection based on the broadband absorption of QDs and the high-speed charge transport of graphene. Hybrid devices employing these materials exhibit enhanced photo responsivity and rapid response times, especially in the near-infrared and visible spectrum.

3.2 Energy Harvesting

QD-graphene structures are used in photovoltaics to improve the efficiency of solar cells. With QDs as tunable absorbers for solar radiation, graphene enables efficient charge extraction. Such interaction yields improved power conversion efficiencies in hybrid solar cells relative to conventional QD-based counterparts(Velasco et al., 2023).

3.3 Bio sensing and Biomedical Applications

For bio sensing purposes, QD-graphene hybrids have been used with the ability of the latter to detect biomolecules in very low concentrations. By utilizing the fluorescence quenching effect of graphene, highly sensitive sensors can be designed for use in disease detection, environmental monitoring, and bio imaging applications(Velasco et al., 2023).

3.4. Computer quantum.

We are witnessed several new developments including in the direction of QD-graphene hybrids for applications in quantum computing and AI (artificial intelligence). The electrical and electronic properties can be tuned by changing the surfactant used, allowing them to be utilized in systems including quantum dots-based logic gates, quantum simulators, and neuromorphic computing architectures, where high mobility of electrical charge carriers is needed.

Photo-Initiated Experimental and Computational Approaches

4.1 Experimental Studies

Some of the experimental methods researchers use to analyze the QD-graphene responses are:

July 2023; Data are obtained from Measured by: Photoluminescence Spectroscopy: (III) Energy transfer and charge recombination in hybrid materials.

Raman Spectroscopy: Identifies the effect of doping and modifications in graphene structures resulting from QD attachment(Zhang et al., 2024)..

X-ray Photoelectron Spectroscopy (XPS): Probes the chemical bonding and charge localization at QD-graphene interface.

Transmission Electron Microscopy (TEM): The morphologically characteristics and dispersion of QDs on the graphene.

4-probe measurements: Determine electrical conductivity and carrier transport properties.

4.2 Computational Modeling

- ➤ The QD-graphene interaction can preferably be predicted through theoretical modeling.
- ➤ Density Functional Theory (DFT): Band structure modifications and charge transfer dynamics simulations.
- Molecular Dynamics (MD) Simulations: Evaluates stability and electronic coupling of the QDs with graphene.
- Finite-Difference Time-Domain (FDTD) Simulations: to predict optical absorption and emission properties of the hybrid system(Zhang et al., 2024)..

Challenges and Future Directions

Although QD-graphene hybrids show promising applications, there are several challenges that remain:

Thermal and Humidity Stability: The long-term stability of QDs on the graphene surface is affected by environmental conditions viz. humidity and temperature. Stability can be improved by applying encapsulation strategies such as polymer coatings and graphene oxide functionalization.

- ➤ Uniformity of Device: To obtain reproducible device performance, it is critical to achieve uniform QD dispersion on the graphene. This challenge is addressed by implementing novel deposition methods, including layer-by-layer self-assembly and in-situ QD growth.
- ➤ Cytotoxicity and Biocompatibility: Concerns for the use degenerate of QDs in biomedical applications are the cytotoxicity properties of some of them, especially Cd-based QDs. Researchers are looking into heavy-metal-free alternatives, including perovskite and carbon QDs, to address toxicity issues.
- ➤ Quantum Coherence and Device Integration: For the application of quantum computing, the coherence should be optimized for QD-graphene hybrid systems to achieve high-fidelity QD qubits for scaling quantum information processing.

5. Conclusion

The combination of QDs and monolayer graphene produces an extremely flexible system for Nano devices of the future. Due to their enhanced charge transfer, energy conversion, and optical tenability, they can be used in optoelectronics, energy harvesting and bio sensing. Nevertheless, material stability, scalability, and biocompatibility need to be considered for commercial viability. Moving forward, efforts to re-design QD-graphene interfacing will be needed in addition to new approaches for encapsulating QDs within their carrier that are more compatible with green

chemistry and remain viable options in the biomedical field. Quantum dot deposition on graphene is also challenging, especially achieving uniform deposition and obtaining high-quality quantum dots, with limited classes of compounds to work with, making more versatile studies harder to do.

REFERENCES

- 1. Freitag, N. M., Chizhova, L. A., Nemes-Incze, P., Novoselov, K. S., Burgdörfer, J., Libisch, F., & Morgenstern, M. (2016). Electrostatically confined monolayer graphene quantum dots with orbital and valley splittings. Nano Letters, 16(9), 5798-5803. https://doi.org/10.1021/acs.nanolett.6b02548
- 2. Alivisatos, A. P. (1996). Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, 271(5251), 933-937.
- 3. Castro Neto, A. H., et al. (2009). The electronic properties of graphene.
- 4. Chen, T., et al. (2023). Atomic force microscopy insights into QD-graphene interfaces. Journal of Physical Chemistry C, 127(3), 1932-1945.
- 5. Chen, Y., et al. (2023). Neuromorphic computing applications of QD-graphene hybrids. Nature Nanotechnology, 18(3), 123-136.
- 6. Fang, X., et al. (2023). Graphene-based qubits for quantum computing. Science Advances, 9(2), eabc5678.
- 7. Gao, J., et al. (2022). Stability of QD-graphene hybrids under environmental stress. Advanced Materials, 34(19), 2200453.
- 8. Grigorenko, A. N., et al. (2012). Graphene plasmonics.
- 9. Huang, B., et al. (2021). Self-assembly strategies for QD-graphene integration. ACS Nano, 15(4), 3214-3226.
- 10. Hybrid graphene-quantum dot phototransistors. Nature Nanotechnology, 7(6), 363-368.
- 11. Kamat, P. V. (2010). Quantum dot solar cells. The Journal of Physical Chemistry C, 112(48), 18737-18753.
- 12. Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., Garcia de Arquer, P. L., Gatti, F., & Koppens, F. H. L. (2012). Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nature Nanotechnology, 7, 363–368. https://doi.org/10.1038/nnano.2012.60
- 13. Konstantatos, G., et al. (2012). "QD-Graphene Photodetectors." Nano Letters, 12, 1272-1276.
- 14. Li, S., et al. (2022). "QD-Graphene for Neuromorphic Computing." Nature Nanotechnology, 17, 689-701.
- 15. Li, S., et al. (2022). QD-graphene-based artificial synapses for neuromorphic computing. Nature Communications, 13(1), 7854.
- 16. Liu, W., et al. (2023). Advances in non-toxic quantum dot materials. Nano Letters, 23(1), 456-472.
- 17. Liu, X., et al. (2011). "DFT Analysis of QD-Graphene Band Structures." Journal of Physical Chemistry C, 115, 12055-12062.
- 18. Liu, X., et al. (2021). Functionalization strategies for enhanced QD-graphene interaction. Nature Communications, 12(1), 4532.
- 19. Nature Photonics, 6(11), 749-758. Kamat, P. V. (2010). Quantum dot solar cells.

- 20. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.
- 21. Reviews of Modern Physics, 81(1), 109. Efros, A. L., & Rosen, M. (2000).
- 22. Sun, H., et al. (2014). "Graphene-Enhanced Solar Cells." Advanced Materials, 26, 5467-5473.
- 23. Sun, H., et al. (2022). Density Functional Theory analysis of QD-graphene hybrids. Physical Review B, 105(14), 144101.
- 24. Sun, J., et al. (2021). Toxicity concerns in quantum dot applications. Journal of Biomedical Nanotechnology, 17(7), 432-449.
- 25. Sun, Z., Chang, H., Saito, M., Jin, F., Ju, H., Niu, W., & Nagai, M. (2016). High performance PbS quantum dot/graphene hybrid solar cell via a two-step transfer method. ACS Applied Materials & Interfaces, 8(9), 6281–6286. https://doi.org/10.1021/acsami.6b02544