Solving Differential Equations Using the Operational Method In the Maple System
Main Article Content
Abstract
There are different approaches to solving DE. With a known solution algorithm, it can be implemented “manually,” which is usually quite labor-intensive. You can develop a computer implementation of the algorithm in any programming language. This approach involves labor-intensive writing and debugging of programs. The third approach is to use existing computer mathematics systems, which have built-in procedures for implementing the necessary algorithms. This approach currently seems to be the most rational from the point of view of minimizing time costs and avoiding errors.
Article Details
Section
How to Cite
References
Матросов А.В. Maple 6. Решение задач высшей математики и механики. СПб.: БХВ -Петербург, 2001.
Мирзакаримов Е.М. Решение задачи по высшей математике с помощью Maple. 1,2,3q, Т.: "Искры литературы", 2014,2015,2015.
Мирзакаримов Е.М. Решение задач аналитической геометрии в системе Maple. Часть 1, Т.: "Навруз", 2019 г.
Mirzakarimov, E. M., & Fayzullaev, J. S. (2020). Improving the quality and efficiency of teaching by developing students* mathematical competence using the animation method of adding vectors to the plane using the maple system. Scientific Bulletin of Namangan State University, 2(9), 336-342.
Mirzakarimov E. M., Faizullaev J. I.,( 2019) Method of teaching the integration of information and educational technologies in a heterogeneous parabolic equation //scientific bulletin of namangan state university. т. 1. – №. 5. – с. 13-17.
Fayzullaev, J. (2020). A systematic approach to the development of mathematical competence among students of technical universities. European Journal of Research and Reflection in Educational Sciences Vol, 8(3). 42-47
Fayzullayev J. I. Mathematical competence development method for students through solving the vibration problem with a Maple system //scientific bulletin of namangan state university. – 2020. – т. 2. – №. 8. – с. 353-358.
Mirzaboevich, M. E., & ugli, E. M. I. (2021). Using Maple Programs in Higher Mathematics. Triangle Problem Constructed on Vectors in Space. Central Asian Journal Of Mathematical Theory And Computer Sciences, 2(11), 44-50. Retrieved from
https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS/article/view/123
Mirzakarimov EM. (2022).To ‘g ‘riburchakli membrananing erkin tebranishini boshlang ‘ich shartlar bo ‘yicha aniqlashda maple tizimidan foydalanish. Scientific Bulletin of Namangan State University. 1(1):53-61.
.Мирзабоевич, М. Э. (2022). Использовать Систему Maple Для Определения Свободных Колебаний Прямоугольной Мембраны При Начальных Условиях. Central Asian Journal Of Mathematical Theory And Computer Sciences, 3(1), 9-18. Retrieved from
https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS/article/view/148
Mirzaboyevich, M. E., & ugli, E. M. I. (2022). Using the Maple System to Evaluate the Efficiency of a Regression Model. Central Asian Journal Of Mathematical Theory And Computer Sciences, 3(5), 7-13. https://doi.org/10.17605/OSF.IO/Q4JRC
Mirzaboyevich, M. E. (2022). Using the Maple System in Selecting an Efficient Model for the Analysis of Experimental Results. Central Asian Journal Of Mathematical Theory And Computer Sciences, 3(5), 14-27. https://doi.org/10.17605/OSF.IO/J8VZM.
Mirzakarimov Ergashboy Mirzaboyevich, F. D. I. (2023). Maple Tizimida Kompleks Sonlarlarning Gеоmеtrik Tаsviri. Eurasian Journal Of Mathematical Theory And Computer Sciences, 3(5), 38–45. https://doi.org/10.5281/zenodo.7923713
Mirzakarimov Ergashboy Mirzaboyevich, F. D. I. (2023). Algebraik Shakildagi Kоmplеks Sоnlаr Ustidа Аmаllаrni Maple Tizimida Bajarish. Eurasian Journal Of Mathematical Theory And Computer Sciences, 3(5), 30–37. https://doi.org/10.5281/zenodo.7923704
Уринов А.К., Мирзакаримов Е.М. Обыкновенные дифференциальные уравнения в системе Maple. F.: "Fergana", 2020 г.