Adsorption Properties of Carbon Nanotube Based on Cyclopentadienyl Iron Dicarbonyl Dimer

Main Article Content

Mamatkodirov B. D
Yakubov. Y. Y
Orunbaev H. G
Samandarov E. Sh
Kodamboev P. K
Mukhammadaliev Kh. G
Serobov A. N

Abstract

In this study, the adsorption capacity of single-walled carbon nanotubes (CN Ts based on cyclopentadienyl iron dicarbonyl dimer) arrays towards pure N2 gas was investigated experimentally and computationally at 77 K and in the pressure range from 0.01 to 1 atm. The experimental work represents gravimetric surface excess adsorption measurements of each gas studied on this nanomaterial. Commercial samples of CNTs based on pure CNTs, which were systematically prepared and initially characterized, were used to evaluate their adsorption capacity. The BET (Brunauer-Emmett-Teller) equation was adopted to estimate the overall adsorption isotherm based on the experimental surface excess adsorption data for each studied system.

Article Details

Section

Articles

How to Cite

Adsorption Properties of Carbon Nanotube Based on Cyclopentadienyl Iron Dicarbonyl Dimer. (2025). Innovative: International Multidisciplinary Journal of Applied Technology (2995-486X), 3(1), 9-15. https://multijournals.org/index.php/innovative/article/view/2982

References

S. Kitagawa, R. Kitaura, S. Noro, Functional Porous Coordination Polymers, Angew Chem Int Ed 43 (2004) 2334–2375. https://doi.org/10.1002/anie.200300610.

X.-L. Qi, J.-W. Ye, R.-B. Lin, P.-Q. Liao, S.-Y. Liu, C.-T. He, J.-P. Zhang, X.-M. Chen, Syntheses, structures and gas sorption properties of two coordination polymers with a unique type of supramolecular isomerism, Inorg. Chem. Front. 2 (2015) 136–140. https://doi.org/10.1039/C4QI00190G.

B. Moulton, M.J. Zaworotko, From Molecules to Crystal Engineering: Supramolecular Isomerism and Polymorphism in Network Solids, Chem. Rev. 101 (2001) 1629–1658. https://doi.org/10.1021/cr9900432.

E.R. Engel, J.L. Scott, Advances in the green chemistry of coordination polymer materials, Green Chem. 22 (2020) 3693–3715. https://doi.org/10.1039/D0GC01074J.

S.R. Batten, N.R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O’Keeffe, M. Paik Suh, J. Reedijk, Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013), Pure and Applied Chemistry 85 (2013) 1715–1724. https://doi.org/10.1351/PAC-REC-12-11-20.

Y. Wang, D. Astruc, A.S. Abd-El-Aziz, Metallopolymers for advanced sustainable applications, Chem. Soc. Rev. 48 (2019) 558–636. https://doi.org/10.1039/C7CS00656J.

A.K. Cheetham, C.N.R. Rao, R.K. Feller, Structural diversity and chemical trends in hybrid inorganic–organic framework materials, Chem. Commun. (2006) 4780–4795. https://doi.org/10.1039/B610264F.

K. Biradha, A. Ramanan, J.J. Vittal, Coordination Polymers Versus Metal−Organic Frameworks, Crystal Growth & Design 9 (2009) 2969–2970. https://doi.org/10.1021/cg801381p.

J. Liu, H. Yu, L. Wang, Z. Deng, K.-R. Naveed, A. Nazir, F. Haq, Two-dimensional metal-organic frameworks nanosheets: Synthesis strategies and applications, Inorganica Chimica Acta 483 (2018) 550–564. https://doi.org/10.1016/j.ica.2018.09.011.

M. Zhao, Q. Lu, Q. Ma, H. Zhang, Two‐Dimensional Metal–Organic Framework Nanosheets, Small Methods 1 (2017) 1600030. https://doi.org/10.1002/smtd.201600030.

C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Recent Advances in Ultrathin Two-Dimensional Nanomaterials, Chem. Rev. 117 (2017) 6225–6331. https://doi.org/10.1021/acs.chemrev.6b00558.

W. Xia, J. Li, T. Wang, L. Song, H. Guo, H. Gong, C. Jiang, B. Gao, J. He, The synergistic effect of Ceria and Co in N-doped leaf-like carbon nanosheets derived from a 2D MOF and their enhanced performance in the oxygen reduction reaction, Chem. Commun. 54 (2018) 1623–1626. https://doi.org/10.1039/C7CC09212A.

K. Zhao, S. Liu, G. Ye, Q. Gan, Z. Zhou, Z. He, High-yield bottom-up synthesis of 2D metal–organic frameworks and their derived ultrathin carbon nanosheets for energy storage, J. Mater. Chem. A 6 (2018) 2166–2175. https://doi.org/10.1039/C7TA06916B.

Z. Kang, L. Fan, D. Sun, Recent advances and challenges of metal–organic framework membranes for gas separation, J. Mater. Chem. A 5 (2017) 10073–10091. https://doi.org/10.1039/C7TA01142C.

A. Bétard, R.A. Fischer, Metal–Organic Framework Thin Films: From Fundamentals to Applications., Chem. Rev. 112 (2012) 1055–1083. https://doi.org/10.1021/cr200167v.

L. Tom, M.R.P. Kurup, A 2D-layered Cd(II) MOF as an efficient heterogeneous catalyst for the Knoevenagel reaction, Journal of Solid State Chemistry 294 (2021) 121846. https://doi.org/10.1016/j.jssc.2020.121846.

P. Li, W. Liu, J.S. Dennis, H.C. Zeng, Ultrafine Alloy Nanoparticles Converted from 2D Intercalated Coordination Polymers for Catalytic Application, Adv Funct Materials 26 (2016) 5658–5668. https://doi.org/10.1002/adfm.201601174.

A.M. Kirillov, Y.Y. Karabach, M.V. Kirillova, M. Haukka, A.J.L. Pombeiro, Topologically Unique 2D Heterometallic Cu II /Mg Coordination Polymer: Synthesis, Structural Features, and Catalytic Use in Alkane Hydrocarboxylation, Crystal Growth & Design 12 (2012) 1069–1074. https://doi.org/10.1021/cg201459k.

S. Zhou, G. Yan, B. Gao, W. Jiang, B. Liu, T. Zhou, C. Liu, G. Che, A layered Mn-based coordination polymer as an efficient heterogeneous catalyst for CO 2 cycloaddition under mild conditions, CrystEngComm 24 (2022) 4527–4533. https://doi.org/10.1039/D2CE00579D.

X.-K. Yang, M.-N. Chang, J.-F. Hsing, M.-L. Wu, C.-T. Yang, C.-H. Hsu, J.-D. Chen, Synthesis, crystal structures and thermal properties of six Co(II) and Ni(II) coordination polymers with mixed ligands: Formation of a quadruple-strained helical nanotube, Journal of Molecular Structure 1171 (2018) 340–348. https://doi.org/10.1016/j.molstruc.2018.06.036.

Similar Articles

You may also start an advanced similarity search for this article.