Cross Section and Yield Calculations of Copper- 67 used in Medicine

Main Article Content

Nawal Fattah Naji
Noor Abdulkarim
Shahlaa Majid J

Abstract

Radiopharmaceuticals used in positron emission tomography (PET) are among the most suitable isotopes for radioimmunotherapy. Copper-67 is a suitable radionuclide for labeling a wide range of tumors due to its long enough half-life to allow good biodistribution within the tumor. Among the possible methods for producing Copper-67 using a cyclotron, we investigate deuteron irradiation of natural zinc and copper targets. This paper examines alpha particle, proton beam, and deuteron irradiation of zinc isotopes, and proton irradiation of gallium-71. Key published and verified experimental findings for excitation functions served as the basis for calculating the cross-section and overall integral yield.

Article Details

Section

Articles

How to Cite

Cross Section and Yield Calculations of Copper- 67 used in Medicine. (2025). Innovative: International Multidisciplinary Journal of Applied Technology (2995-486X), 3(10), 69-78. https://doi.org/10.51699/1zwsy724

References

G. Capriotti, A. Piccardo, E. Giovannelli, and A. Signore, “Targeting Copper in Cancer Imaging and Therapy: A New Theragnostic Agent,” J. Clin. Med., vol. 12, no. 1, 2023.

J. Chen, F. G. Kondev, I. Ahmad, M. P. Carpenter, J. P. Greene, R. V. F. Janssens, S. Zhu, D. Ehst, V. Makarashvili, et al., “β-decay study of 67Cu,” Phys. Rev. C, vol. 92, p. 044330, Oct. 2015.

J. Huo, X. Huang, and J. K. Tuli, “Nuclear data sheets for A = 67,” Nucl. Data Sheets, vol. 106, pp. 159, 2005.

National Nuclear Data Center, “Chart of Nuclides,” NuDat 2.8, [Online]. Available: https://www.nndc.bnl.gov/nudat2/

G. Pupillo, T. Sounalet, N. Michel, L. Mou, J. Esposito, and F. Haddad, “New production cross sections for the theranostic radionuclide 67Cu,” Nucl. Instrum. Methods Phys. Res. Sect. B, vol. 415, pp. 41–47, 2018, doi: 10.1016/j.nimb.2017.10.022.

V. Levkovski, Cross Sections of Medium Mass Nuclide Activation (A=40–100) by Medium Energy Protons and Alpha Particles (E=10–50 MeV), Moscow, USSR: Inter-Vesi, 1991.

S. Kastleiner, H. H. Coenen, and S. M. Qaim, “Possibility of production of 67Cu at a small-sized cyclotron via the (p,α) reaction on enriched 70Zn,” Radiochim. Acta, vol. 84, pp. 107–110, 1999, doi: 10.1524/ract.1999.84.2.107.

J. Kozempel, K. Abbas, F. Simonelli, A. Bulgheroni, U. Holzwarth, and N. Gibson, “Preparation of 67Cu via deuteron irradiation of 70Zn,” Radiochim. Acta, vol. 100, pp. 419–423, 2012, doi: 10.1524/ract.2012.1939.

T. Porile, S. Tanaka, H. Amano, M. Furukawa, S. Iwata, and M. Yagi, “Nuclear reactions of 69Ga and 71Ga with 13–56 MeV protons,” J. Nucl. Phys., vol. 43, p. 500, 1963.

G. Santistevan, R. Bentley, D. Wells, A. Hutton, A. Stavola, S. Benson, K. Jordan, J. Gubeli, P. Degtiarenko, and L. Dabill, “Photonuclear Production of 67Cu From Gallium,” Nucl. Sci. Eng., vol. 198, 2024.

J. F. Ziegler, J. P. Biersack, and M. Ziegler, SRIM: The Stopping and Range of Ions in Matter, SRIM Company, 2008.

IAEA, Charged Particle Cross-Section Database for Medical Radioisotope Production, IAEA-TECDOC-1211, Vienna, 2001.

M. L. Bonardi, F. Groppi, H. S. Mainardi, V. M. Kokhanyuk, E. V. Lapshina, M. V. Mebel, and B. L. Zhuikov, “Cross section studies on Cu-64 with zinc target in the proton energy range from 141 down to 31 MeV,” J. Radioanal. Nucl. Chem., vol. 264, p. 101, 2005.

D. L. Morrison and A. A. Caretto Jr., “Recoil study of the 68Zn (p,2p)67Cu reaction,” Phys. Rev., vol. 133, no. 5, pp. B1165–B1169, 1964.

D. L. Morrison and A. A. Caretto, “Excitation Functions of (p,xp) Reactions,” Phys. Rev., vol. 127, p. 1731, 1962.

K. Hilgers, T. Stoll, Y. Skakun, H. H. Coenen, and S. M. Qaim, “Cross-section measurements of the nuclear reactions natZn(d,x)64Cu, 66Zn(d,α)64Cu and 68Zn(p,αn)64Cu for production of 64Cu and technical developments for small-scale production of 67Cu via the 70Zn(p,α)67Cu process,” Appl. Radiat. Isot., vol. 59, no. 5–6, pp. 343–351, 2003, doi: 10.1016/S0969-8043(03)00199-4.

G. Pupillo, T. Sounalet, N. Michel, L. Mou, J. Esposito, and F. Haddad, “New production cross sections for the theranostic radionuclide 67Cu,” Nucl. Instrum. Methods Phys. Res. Sect. B, vol. 415, pp. 41–47, 2018, doi: 10.1016/j.nimb.2017.10.022.

T. Porile, S. Tanaka, H. Amano, M. Furukawa, S. Iwata, and M. Yagi, “Nuclear reactions of 69Ga and 71Ga with 13–56 MeV protons,” J. Nucl. Phys., vol. 43, p. 500, 1963.

E. Nigron, A. Guertin, F. Haddad, and T. Sounalet, “Is 70Zn(d,x)67Cu the best way to produce 67Cu for medical applications?,” Front. Med., vol. 8, p. 1059, 2021.

D. C. Williams and J. W. Irvine Jr., “Nuclear excitation functions and thick-target yields: Zn+d and 40Ar(d,α),” Phys. Rev., vol. 130, no. 1, p. 265, 1963.

S. F. Hosseini, M. Aboudzadeh, M. Sadeghi, A. A. Teymourlouy, and M. Rostampour, “Assessment and estimation of 67Cu production yield via deuteron induced reactions on natZn and 70Zn,” Appl. Radiat. Isot., vol. 127, pp. 137–141, Sep. 2017.

N. T. Porile and D. L. Morrison, “Reactions of Cu-63 and Cu-65 with Alpha Particles,” Phys. Rev., vol. 116, p. 1193, 1959.