Common Fixed Points of Compatible Mappings in G-Metric Type Spaces

Main Article Content

Neeru yadav

Abstract

This paper introduces and investigates the concept of compatible mappings in G-metric type spaces, establishing a novel framework for fixed point theory. We define and analyze the notion of compatibility between self-mappings in the context of G-metric type spaces, which generalizes existing compatibility conditions in metric spaces. Several fixed point theorems are proved by employing various contractive conditions on compatible mappings. Our main results extend and unify various theorems in the literature, demonstrating the efficacy of compatibility in obtaining common fixed points in G-metric type spaces. The theoretical significance of these findings is illustrated through examples and counterexamples, highlighting the necessity of our compatibility conditions. 

Article Details

Section

Articles

How to Cite

Common Fixed Points of Compatible Mappings in G-Metric Type Spaces. (2025). Innovative: International Multidisciplinary Journal of Applied Technology (2995-486X), 3(3), 127-133. https://multijournals.org/index.php/innovative/article/view/3306

References

1. Agarwal, R. P., Karapınar, E., & Samet, B. (2020). A survey on G-metric type spaces and related fixed point theorems. Journal of Nonlinear Science and Applications, 13(2), 114-133.

2. Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3(1), 133-181.

3. Fréchet, M. (1906). Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo, 22(1), 1-72.

4. Jungck, G. (1986). Compatible mappings and common fixed points. International Journal of Mathematics and Mathematical Sciences, 9(4), 771-779.

5. Kannan, R. (1968). Some results on fixed points. Bulletin of the Calcutta Mathematical Society, 60, 71-76.

6. Karapınar, E., Czerwik, S., & Aydi, H. (2019). $(alpha,beta)$-admissible mappings in G-metric spaces. Journal of Function Spaces, 2019, Article ID 4376548.

7. Mustafa, Z., & Sims, B. (2006). A new approach to generalized metric spaces. Journal of Nonlinear and Convex Analysis, 7(2), 289-297.

8. Rhoades, B. E. (1977). A comparison of various definitions of contractive mappings. Transactions of the American Mathematical Society, 226, 257-290.

9. Zhang, Q. (2022). Common fixed points of compatible mappings in metric spaces. Mathematics, 10(5), 825.