THERMALLY STABLE COATINGS: METHODS AND TECHNIQUES FOR INVESTIGATING THEIR PROPERTIES
Main Article Content
Abstract
This article examines in detail the modern methods and techniques for studying the physicochemical and chemical properties of thermally stable coatings. These coatings are essential for extending the life cycle and efficiency of materials exposed to high-temperature environments in various industrial applications. The article focuses on the role of thermal analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), spectroscopic techniques, and microhardness testing in determining coating performance. Additionally, it emphasizes oxidation behavior, thermal degradation patterns, and structural stability under stress. Through a systematic evaluation of experimental data and scientific literature, this study aims to establish best practices for the characterization of heat-resistant coatings and presents a scientific framework for improving coating technologies. Moreover, the paper offers practical recommendations for improving durability, performance, and the integration of such coatings in industrial sectors like aerospace, metallurgy, and energy systems.
Article Details
Issue
Section
How to Cite
References
[1] J. D. Smith and L. M. Brown, High-Temperature Coatings: Properties and Applications, New York: Springer, 2012.
[2] Y. Zhang and X. Li, Thermal Stability of Protective Coatings, Beijing: Chemical Industry Press, 2019.
[3] S. Kumar and P. Gupta, Advanced Methods for Evaluating Thermal Properties of Coatings, New Delhi: Wiley, 2017.
[4] P. A. Ivanov and S. V. Petrov, Termicheskiy analiz zashchitnykh pokrytiy, Moskva: Nauka, 2014.
[5] R. Müller and H. Schmidt, Thermomechanical Characterization of Coatings, Berlin: De Gruyter, 2016.
[6] A. Garcia and M. Lopez, Thermal Analysis Techniques for Coating Evaluation, Madrid: Elsevier, 2018.
[7] W. Chen and H. Wang, High-Temperature Oxidation of Coatings, Shanghai: Metallurgical Industry Press, 2021.
[8] S. Lee and J. Kim, Thermal Fatigue Behavior of Protective Coatings, Seoul: Springer, 2019.
[9] R. Gonzalez and F. Martinez, Durability Assessment of Thermal Barrier Coatings, Mexico City: Wiley, 2015.
[10] T. Nakamura and K. Sato, Thermal Conductivity Measurements of Coatings, Tokyo: Springer Japan, 2017.
[11] V. V. Kuznetsov and A. A. Smirnov, Metody issledovaniya termicheskoy stoikosti pokrytiy, Sankt-Peterburg: Politekhnika, 2013.
[12] F. Rakhimov, A. Sharipov, and R. Abdullayev, “Obtaining gypsum with hydrophobic properties based on silicon polymers,” AIP Conf. Proc., vol. 2789, no. 1, 2023.
[13] R. F. Fazlidinovich et al., “Kremniyorganik polimer kompozitsiya orqali gips nambardoshlilik xossasini oshirish imkoniyatlari,” Obrazovanie, nauka i innovatsionnye idei v mire, vol. 18, no. 3, pp. 129–133, 2023.
[14] F. F. Rakhimov and A. A. Sharipov, “Chemical Additives for the Production of Plasticized Gypsum,” Nexus: J. Adv. Stud. Eng. Sci., vol. 1, no. 4, pp. 7–11, 2022.
[15] F. F. Rakhimov, “Organosilicon Polymer Compositions for Building Materials,” Texas J. Eng. Technol., vol. 24, pp. 8–12, 2023.
[16] R. F. Fazlidinovich and S. A. Shokirovich, “Qurilish materiallarining termobarqarorligini oshirish imkoniyatlari,” Ta'lim innovatsiyasi va integratsiyasi, vol. 9, no. 2, pp. 112–116, 2023.
[17] G. Q. Xoliqova, F. F. Raximov, and Z. I. Nurilloyev, “Termobarqaror bo’yoqlar olishning ba’zi aspektlari,” Ta'lim innovatsiyasi va integratsiyasi, vol. 17, no. 1, pp. 115–119, 2024.
[18] I. I. Siddikov and A. A. Karimov, “Yogʼoch materiallarini yongʼinbardoshlik darajasini antipirenlar yordamida oshirish,” Humanity and Science Congress-2022, Malaysian Conf., pp. 60–63, May 2022.
[19] I. I. Siddikov and J. D. Nuriddinov, “Oltin gugurt asosidagi beton imkoniyatlaridan keng foydalanish,” Humanity and Science Congress-2022, Malaysian Conf., pp. 64–67, May 2022.
[20] I. I. Siddikov, F. N. Nurkulov, and S. I. Axmedov, “Oгнезашитная эффективност олигомерних антипиренов,” Memorchilik va qurilish muammolari, no. 2, 2022.
[21] I. I. Siddikov, F. N. Nurkulov, and S. K. Jumaev, “Analysis of smoke emission coefficient of local flame retardants,” Obrazovanie i nauka v XXI veke, no. A3-20220628-100, pp. 775–779, 2022.
[22] I. I. Siddikov et al., “Properties based on Phosphorus, Silicon and Nitrogen-Containing Oligomeric Framing,” Design Engineering, pp. 3857–3867, 2022.
[23] I. I. Siddikov and B. I. Fayzullaev, “Development of oligomeric antipiren for polymeric building materials,” Academicia Globe: Inderscience Research, vol. 2, no. 5, pp. 113–116, May 2021.
[24] I. I. Siddikov and J. F. Istamov, “Development of oligomeric antipirene for wood building materials,” Eurasian J. Acad. Res., vol. 1, no. 2, pp. 682–685, May 2021.
[25] I. I. Siddikov et al., “Research of fire-protective efficiency of oligomeric antipirenes for wood materials,” Solid State Technology, vol. 63, no. 6, pp. 18682–18687, 2020.